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Selecting digital suppliers is not only a technological issue but also a 
fundamental economic decision for manufacturing SMEs pursuing digital 
transformation. Supplier choice directly affects cost efficiency, resource 
allocation, and long-term competitiveness. This study develops a quantitative 
multi-criteria decision-making (MCDM) framework that integrates 
Pythagorean Neutrosophic TOPSIS (PNTOPSIS) and VIKOR (PNVIKOR), 
strengthened by a novel distance measure, the Flexible Indeterminacy 
Quantifier (FIQ). The framework explicitly addresses incomplete and 
uncertain evaluations that complicate procurement under financial and 
operational constraints. A real-world case with five digital suppliers is 
analyzed across criteria including system capability, vendor support, total 
cost, and risk of disruption. The findings highlight the supplier that delivers 
the highest economic value by aligning affordability with operational 
reliability. FIQ improves score differentiation and ranking stability, enabling 
SMEs to make more economically rational choices. Sensitivity analysis 
confirms that the model produces consistent outcomes under varying 
budgetary assumptions, demonstrating its robustness for strategic 
procurement. Overall, this research provides SMEs with an uncertainty-
aware, cost-sensitive tool that reduces financial risks, enhances transparency 
in supplier selection, and supports sustainable economic performance within 
digitally transforming industrial ecosystems. 
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1. Introduction 

In an era of digital transformation, economic uncertainty, and global competition, the ability to 
make educated and data-driven decisions has become critical to an efficient and resilient system for 
manufacturing small and medium-sized enterprises (SMEs). One critical area where this need is 
particularly evident are in digital supplier selection (DSS). These decision affects not only cost 
efficiency but also technological adaptability, operational continuities, and competitive position. As 
SMEs strives to modernize through digital solutions, selecting the most appropriate digital supplier 
become a multidimensional decision-making problem that involve strategic trade-offs across various 
conflicting criteria. This decision is further complicated by incomplete information, subjective expert 
input, and uncertainty about future condition. To address this complexities, multi-criteria decision-
making (MCDM) method have emerged as effective tools for support rational, transparent and 
uncertainty-aware analysis.  

Amongst the most notable MCDM methods, the Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS) and Vlsekriterijumska Optimizacija I KOmpromisno Resenje (VIKOR) are 
widely used to produce a systematic order of alternatives. These approaches have shown broad 
utility beyond supplier selection application, extending into areas such as investment analysis, energy 
planning, financial risk assessment, and policy prioritization further verifying their usefulness in a 
broad range of economic decision-making environments [1-2]. However, traditional approaches to 
TOPSIS and VIKOR implementations are usually based on using crisp data or rather simple fuzzy 
models, which do not allow the ambiguity, vagueness and hesitancy of actual cases to be defined 
comprehensively. 

In order to overcome this limitation, the notion of neutrosophic sets and their extensions, in 
particular, Pythagorean neutrosophic set (PNS), have been brought forward. PNS allow decision-
makers to express three degrees of membership namely, truth (𝜏), indeterminacy (𝜉), and falsity (𝜂), 
offering a more all-around portrayal of uncertain information [3-4]. Therefore, this study develops 
the Pythagorean neutrosophic TOPSIS (PNTOPSIS) and Pythagorean neutrosophic VIKOR (PNVIKOR) 
to boost the level of robustness and flexibility of ranking processes in uncertain and conflicting 
evaluations. 

Nevertheless, a key issue is still looming in the choice of suitable distance measures within 
neutrosophic environments. The reliability of any neutrosophic MCDM approach largely depends on 
the accuracy of the distance metric used. Common distance measures such as extensions of 
Hamming, Euclidean, and Cosine metrics rely on rigid definitions that do not account for the complex 
interdependencies of truth, indeterminacy, and falsity membership degrees. These traditional 
measures often fail to recognize the fluid character of ambiguity and expert uncertainty, which may 
result in an unstable or inconsistent ranking in presence of high indeterminacy. 

To fill this gap, this research proposes a new distance measure, namely Flexible Indeterminacy 
Quantifier (FIQ), that is specifically designed for the neutrosophic set framework. The proposed 
distance measure is adaptive, dynamic and provides for an accurate quantification of indeterminacy 
interactions, which increases the stability and precision of rankings in the neutrosophic MCDM 
approaches. Through improved interpretability and accuracy in distance-based assessments, the 
proposed measure significantly enhances the decision-making capabilities of PNTOPSIS and 
PNVIKOR, with digital supplier selection for manufacturing SMEs serving as a representative case 
application in economic decision-making. 

The primary contributions of this study are: 
i. Development of the FIQ distance measure. 
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ii. Introduction of PNTOPSIS and PNVIKOR methodologies. 
iii. Demonstration of the applicability of both methods combined with FIQ measure in a 

digital supplier selection case for manufacturing SMEs and conducting comparative 
analysis. 

iv. Comparison of the proposed framework with traditional distance measure and testing 
the ranking stability under different criterion weightage in sensitivity analysis. 

The remainder of this paper is organized as follows. Section 2 examines the relevant literatures. 
Section 3 outlines the foundational preliminaries. Section 4 introduces the proposed FIQ distance 
measure. Section 5 shows the development of the PNTOPSIS and PNVIKOR approaches. Section 6 
demonstrates the practical application of the proposed methodology through digital supplier 
selection case study, including comparative and sensitivity analyses. Finally, Section 7 provides the 
concluding remarks of the study. 

 
2. Relevant Literature 
This section critically examines the relevant literature in the context of this study. 
 
2.1 Digital Supplier Selection 

As a strategic requirement, digital transformation of SMEs in the manufacturing industry requires 
the reengineering of the organization in relation to the processes, structure, and business model with 
the use of technologies, including artificial intelligence (AI), the Internet of Things (IoT), and big data 
analytics [5-6]. These technologies can improve efficiency, enable more tailored offerings, and help 
businesses respond more quickly to change. However, many SMEs face real challenges due to limited 
funding, a lack of technical expertise, and outdated infrastructure. Even so, the development of 
Digital Supply Chains (DSCs) provides a promising solution. With their focus on real-time data sharing, 
interconnected systems, and predictive capabilities, DSCs offer SMEs a practical way to overcome 
these barriers and create more flexible and scalable operations [7-8]. 

As manufacturing SMEs adopt DSCs, digital supplier selection (DSS) becomes a vital aspect of 
supply chain strategy. Evaluation of the suppliers on the basis of their technological maturity, system 
integration capability, data transparency, and support to innovation and resilience now complement 
the traditional evaluation criteria, namely, cost, quality, and delivery [9-10]. These digital capabilities 
are essential not only for operational alignment but also for advancing Supply Chain Quality 
Management (SCQM), which seeks to improve quality, performance, and customer satisfaction 
through the coordinated efforts of supply chain partners [11]. For SMEs, selecting digitally capable 
suppliers is critical to building supply chains that can respond to dynamic market demands and 
technological disruptions. 

To enable such a complex decision-making in the scenarios of DSS, researchers have developed a 
series of sophisticated decision-making models that can accommodate the needs of manufacturing 
SMEs. A hybrid SWARA-WASPAS model was proposed by Sharma and Joshi [9], in which suppliers 
were assessed on the basis of the following criteria innovativeness, responsiveness, interoperability, 
and cost effectiveness, which allowed to find out that the digital competence had a powerful positive 
impact on SCQM outcomes. Özek and Yildiz [12] applied interval type-2 fuzzy TOPSIS in their garment 
business, focusing on the importance of such criteria as digital production system and intelligent 
logistics, and managed the expert uncertainty effectively. Tavana et al., [13] built on the DSS 
techniques and integrated fuzzy BWM, MULTIMOORA, COPRAS, and TOPSIS and maximize 
agreement heuristic (MAH) to support solid supplier prioritization in the digital environment. Erbay 
and Yildirm [14] provided a mixed model combining AHP and QFD and Mixed Integer Programming, 
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with its effectiveness tested on a case of an automotive supplier SME in Turkey, where data analytics 
and sensor technologies were ranked the highest, and, on the contrary, the main areas of adoption 
challenges which included a lack of expertise and budgets constraints were identified. All of these 
shows together how DSS is not just an operational tool but also a strategic tool that is essential in 
enabling manufacturing SMEs undergoing digital transformation. 
 
2.2 Neutrosophic sets and extension 

Fuzzy set theory was first introduced by Zadeh [15], which provide the means to represent 
uncertainty by appointing membership values in the range [0,1]. This innovation provided a flexible 
mathematical framework to handle vague information. Zadeh also adapted classical set operations 
such as union, intersection, complement, and convexity to work within this new fuzzy framework. By 
using these set operations in fuzzy subsets, Zadeh built the foundation for later developments in 
uncertainty modeling. Despite its usefulness, fuzzy set theory lacked the capacity to adequately 
capture hesitation or ambiguity when information was incomplete or conflicting. To overcome these 
limitations, Atanassov [16] introduced intuitionistic fuzzy sets (IFS), which incorporated independent 
membership and non-membership degrees, along with a hesitation component that reflects the 
uncertainty between the two. This extension offered an improved way to express uncertain data. 
However, IFS still face challenges to handle inconsistent and incomplete information that often found 
in real world scenario. Yager [17] further extended the study by proposing Pythagorean fuzzy sets 
(PFS), where the squared sum of the membership and non-membership is less than or equal to one. 
This condition enables higher capacity and flexibility for fuzzy sets compared to IFS. Nonetheless, the 
ability of PFS was still limited in handling data that is consisting indeterminacy.   

To address this gap, Smarandache [18] introduced neutrosophic sets (NS) which can better handle 
uncertainty. Unlike the previous framework, neutrosophic sets defined by three independent and 
unique functions namely the truth-membership, indeterminacy-membership, and falsity-
membership. In environment that are full of ambiguity and contradictions, these functions support a 
better representation of uncertainty. The way neutrosophic sets work, the three components do not 
have a fixed way for their values to add up, so they can work in many flexible ways. However, 
Smarandache [19] and Wang et al., [20] introduced the notion of the single-valued neutrosophic set 
(SVNS), where every value ranges from 0 to 1 and the combined sum is no greater than 3. Based on 
this theory, multiple new developments of neutrosophic sets have been suggested to help with 
different kinds of uncertainties. Some examples are interval neutrosophic sets proposed by Wang et 
al., [21], simplified neutrosophic sets outlined by Ye [22], neutrosophic soft sets explained by Maji 
[23], the multi-valued neutrosophic set by Wang and Li [24] and rough neutrosophic sets examined 
by Broumi et al., [25]. Each variation focuses on different types of problems, while making the 
neutrosophic method more expressive [26]. 

One important addition to neutrosophic set theory is the Pythagorean neutrosophic set (PNS). 
Jansi et al., [27] extended the correlation coefficient framework to PNS where the new framework is 

based on the Pythagorean constraint 0 ≤ (𝜏𝐴(𝑥))
2
+ (𝜉𝐴(𝑥))

2
+ (𝜂𝐴(𝑥))

2 ≤ 2 for the components 

of truth, indeterminacy and falsity. Because of this constraint, PNS can cover more situations than 
the traditional neutrosophic model and is better suited for studying complex uncertain relationships. 
It is most useful in contexts where traditional neutrosophic sets may be too restrictive. PNS make 
aggregation and comparison processes more precise, because they allow for a detailed 
representation of uncertainty in decision-making. This makes it a valuable framework in applications 
where dealing with uncertainty is very important [28-29]. More complex types of information and 
hesitancy in decisions can now be captured with the bipolar Pythagorean neutrosophic set (BPNS) 
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and the interval-valued Pythagorean neutrosophic set (IVPNS) which are both extensions of PNS [30-
33]. All in all, PNS shows how uncertainty modeling is progressing to help deal with the many 
intricacies of real-world problems. 
 
2.3 Neutrosophic distance measure 

Decision-making, clustering, classification and information retrieval systems rely heavily on 
distance measures. Traditional measures, such as Euclidean and Hamming distances, are widely used 
across various studies. Nevertheless, they face difficulties in representing the imprecise and 
sometimes confusing real-world data. Neutrosophic distance measures solve these issues by bringing 
truth, indeterminacy and falsity degrees into one strong mathematical foundation. With these 
measures, it is easier to tell how alike or different the elements within neutrosophic sets are, helping 
handle uncertainty better. 
 
Several neutrosophic distance measures have been used in previous research and are listed below: 

1. Neutrosophic Hamming distance 

𝑑(𝐴, 𝐵) =∑(|𝜏𝐴 − 𝜏𝐵| + |𝜉𝐴 − 𝜉𝐵| + |𝜂𝐴 − 𝜂𝐵|)

𝑛

𝑖=1

 
(1) 

The Hamming distance has been widely used in many neutrosophic set-based decision models 
because it is simple and efficient in measuring the absolute differences in truth, 
indeterminacy and falsity membership degrees [34-37]. 

2. Neutrosophic Euclidean distance 

𝑑(𝐴, 𝐵) = √∑((𝜏𝐴 − 𝜏𝐵)2 + (𝜉𝐴 − 𝜉𝐵)2 + (𝜂𝐴 − 𝜂𝐵)2)

𝑛

𝑖=1

 (2) 

Unlike the Hamming distance, the Euclidean distance measures difference by working with 
the squared values of truth, indeterminacy and falsity. Continuing to adjust results in a refined 
distinction between neutrosophic sets, making it suitable for applications that need high 
precision [34], [36-38]. 

3. Neutrosophic Hausdorff metric 

𝑑(𝐴, 𝐵) = 𝑚𝑎𝑥{ℎ𝑓(𝐴, 𝐵), ℎ𝑏(𝐴, 𝐵)} (3) 

Where ℎ𝑓(𝐴, 𝐵) = max
𝑖=1,2… ,𝑛

{ min
𝑗=1,2,…,𝑛

𝑑(𝐴𝑖 , 𝐵𝑗)} and ℎ𝑏(𝐴, 𝐵) = max
𝑗=1,2… ,𝑛

{ min
𝑖=1,2,…,𝑛

𝑑(𝐵𝑗 , 𝐴𝑖)}. 

Here 𝑑(𝑎, 𝑏) represents the individual distance between elements 𝑎 and 𝑏. In practice, this 
measure efficiently highlights the distinct structures found in neutrosophic sets during 
clustering [39]. 

4. Neutrosophic sine distance measure 

𝑑(𝐴, 𝐵) =
5

3𝑛
∑

sin {
𝜋
6
|𝜏𝐴 − 𝜏𝐵|} + sin {

𝜋
6
|𝜉𝐴 − 𝜉𝐵|} + sin {

𝜋
6
|𝜂𝐴 − 𝜂𝐵|}

1 + sin {
𝜋
6
|𝜏𝐴 − 𝜏𝐵|} + sin {

𝜋
6
|𝜉𝐴 − 𝜉𝐵|} + sin {

𝜋
6
|𝜂𝐴 − 𝜂𝐵|}

𝑛

𝑖=1

 
(4) 

A new approach to measuring distance in neutrosophic sets is the sine distance measure 
which uses a non-linear transformation that works better with uncertainty. This choice of 
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function helps to highlight smaller differences that affect the total distance in a non-linear 
way which is helpful in complex decision-making cases [40]. 

5. Generalized weighted distance measure 

𝑑(𝐴, 𝐵) = {∑𝑤𝑖[|𝜏𝐴 − 𝜏𝐵|
𝑝 + |𝜉𝐴 − 𝜉𝐵|

𝑝 + |𝜂𝐴 − 𝜂𝐵|
𝑝]

𝑛

𝑖=1

}

1
𝑝

 (5) 

This distance measure which derived from the Minkowski formulation proposed by Ye [34], 
has been widely applied in neutrosophic decision-making. The measure gives a score based 
on weights that do not change and a fixed power parameter 𝑝. Although this approach is 
fundamental, it is not flexible enough to deal with different levels of uncertainty. Therefore, 
we introduce the FIQ distance which is based on the generalized model but brings major 
upgrades: adaptive weightings, self-regulating exponents and dynamic norm selection. With 
these features, FIQ is more responsive and robust in environments involving high uncertainty. 
 

2.4 MCDM 
Multi-criteria decision-making (MCDM) is a vital branch of decision science that provides a 

structured and systematic approach for evaluating complex problems involving multiple, often 
conflicting criteria. MCDM is a major area of decision science that helps organize and systematically 
solve issues where several, sometimes clashing, criteria come into play. MCDM has become 
necessary for making fair and clear decisions, mainly because challenges for decision-making are 
inevitable in strategic management, healthcare, environmental sustainability and engineering [41]. 
This helps decision-makers to take into account both quantitative data and qualitative judgements 
and rate each aspect in line with its importance. Looking at economic issues from all angles helps 
lead to sensible and contextual decisions [42]. 

A central function of MCDM is the ranking of alternatives that allows for sorting of systematic 
ranking of alternatives in a way that suits the main objectives. This process is essential when 
resources are scarce, when different groups have different interests or when the results matter a lot 
[43]. A high-quality ranking helps make the results more transparent, promotes reproducibility and 
supports sensitivity analysis. All of these factors play a key role in helping decisions to be reliable and 
supportable [44]. 

In the world of MCDM, TOPSIS and VIKOR are widely utilized in theoretical studies and practical 
applications. Their value lies in handling different choices, reconciling events with conflicting goals 
and handling uncertainty [45]. This study uses both methods together to take advantage of their 
strengths, aiming to produce clear and well-rounded rankings of the alternatives. The latest 
development is the creation of the Adaptive Utility Ranking Algorithm (AURA) as a new MCDM 
ranking method that incorporates a flexible distance-based approach, streamlines computations, and 
applies a dynamic normalization scheme capable of handling benefit, cost, and target-type criteria 
for improved adaptability in real-world decision-making [46]. 

Recently, more studies have applied neutrosophic extensions in MCDM problems. For example, 
Abdalla et al., [47] developed interval-valued Fermatean neutrosophic super hypersoft sets to help 
with the uncertainties that occur in healthcare decisions. Biswas et al., [48] use triangular 
neutrosophic numbers within the CRITIC-COPRAS framework to assess potential canteen sites, while 
Basuri et al., [49] used new scoring functions based on neutrosophic numbers to guide school location 
selection. These studies demonstrate that neutrosophic models are gaining flexibility and importance 
for resolving various MCDM cases. 
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The next part reviews official literature dealing with TOPSIS and VIKOR and gives the necessary 
introduction for their application in this study. 
 
2.4.1 TOPSIS 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), originally introduced by 
Hwang and Yoon [50], is still considered a major technique in MCDM. It stands out most because it 
orders options based on their closeness to an ideal solution, whilst still handling the differences 
between positive and negative ideal points. TOPSIS is different from pairwise methods since it easily 
handles complex decision situations by providing a straightforward ranking tool. Its strong 
performance allows it to be applied in many domains, like engineering, finance, management and 
operations research, where it helps in optimizing product design, facility location selection, and 
resource allocation. 

Since decision-making situations are increasingly complex, researchers have sought to make 
TOPSIS more accurate by blending it with fuzzy set theory. According to recent studies, combining 
several methods brings better results. By fusing fuzzy Analytical Hierarchy Process (AHP), fuzzy 
TOPSIS, and clustering methods, Arıcan and Kara optimized the choice of chemical tankers for 
different cargo types, outlining a clear selection process [51]. Likewise, as detailed by He et al., [52], 
a hybrid fuzzy AHP-TOPSIS framework was used to review music education strategies that assist in 
overcoming anxiety and depression in Chinese university students. Otay et al., [53] combined fuzzy 
TOPSIS with interval-valued Pythagorean fuzzy sets and multi-expert fuzzy Best-Worst Method 
(BWM) to determine the most appropriate investments in sustainable energy for smart cities. 
Moreover, Usun et al., [54] used type-2 fuzzy sets within an extended TOPSIS framework for their 
study and contributed to better passenger satisfaction in the airline industry by improving customer 
segmentation and higher service quality ratings. Additionally, Quynh [55] introduced an integral-
value fuzzy TOPSIS model for banking performance evaluation with a normalization process for 
ranking fuzzy numbers which leads to more accurate results in financial assessments. 

Recent work has improved TOPSIS further by introducing neutrosophic sets to deal with uncertain 
cases that have both indeterminacy and inconsistent information. Sharma et al., [56] introduced 
interval-valued neutrosophic TOPSIS to rank hotels based on Tripadvisor aspect ratings, evidence its 
applicability for studying consumer preferences. Argilagos et al., [57] used neutrosophic TOPSIS to 
arrange strategies aimed at promoting healthy nutritional habits in schools, efficiently handling 
unclear data in behavioral research. Recalde et al., [58] showed that SVNS-TOPSIS is effective by using 
it to assess preventive dental education programs, thus confirming its usefulness for educational 
planning. Moreover, Anwar et al., [59] introduced a neutrosophic TOPSIS system for evaluating sports 
league performances, resolving inconsistencies in player performance statistics and offering a more 
reliable approach to ranking the teams.  

These developments highlight how TOPSIS methods are becoming more advanced in dealing with 
uncertainty. Fuzzy and neutrosophic extensions have increase the applicability of TOPSIS methods 
and made it possible to address challenges that are hard to define and for decision-makers to manage 
unclarity in various sectors. 
 
2.4.2 VIKOR 

Opricovic [60] introduced VIKOR which is regarded as a leading method in MCDM for situations 
involving multiple and conflicting criteria. Unlike TOPSIS and other distance-based methods, VIKOR 
looks for solutions that provide a good balance between the group utility and individual regret. 
Considering both criteria, VIKOR seeks optimal solutions that are also balanced and fair and that 
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benefit the entire group of stakeholders during the decision process. Due to its ability to adapt to 
various methods and support agreements among experts, VIKOR is widely used in numerous fields 
such as engineering, environmental management, optimizing supply chains and socio-economic 
planning.  

Given growing uncertainty in decisions, researchers have adopted the VIKOR method with 
principles of fuzzy set theory to handle data that is vague and lacking information. This fusion has 
enhanced decision-making in diverse domains. In infrastructure planning, Mahmudah et al., [61] 
applied fuzzy VIKOR combined with fuzzy AHP to select an optimal nuclear power plant site in 
Indonesia, focusing on socio-economic factors. In supply chain and organizational contexts, Phan et 
al., [62] identified key barriers to supply chain resilience in Vietnamese small and medium-size 
enterprises (SMEs), while Lam et al., [63] ranked the financial performance of Malaysian construction 
firms using an entropy–fuzzy VIKOR approach. In the education sector, Ayouni et al., [64] evaluated 
learning management systems in Saudi universities. In tourism and human resources, Hosseini et al., 
[65] prioritized COVID-19 recovery strategies for ecotourism centers using fuzzy DEMATEL combined 
with fuzzy VIKOR, while Öztürk and Kaya [66] applied fuzzy VIKOR to support personnel selection in 
the automotive industry, helping identify the best candidate among several alternatives. These 
studies demonstrate how fuzzy VIKOR facilitates rational, equitable decisions under uncertainty 
across varied applications.  

To further confront the challenges posed by indeterminacy and conflicting information, scholars 
have extended the VIKOR method using neutrosophic set theory, offering a richer framework for 
modeling uncertainty. This enhanced approach has proven effective in varied decision-making 
scenarios. In legal and cybersecurity domains, Uluçay et al., [67] proposed a VIKOR model based on 
Q-single-valued neutrosophic sets to evaluate cyber warfare strategies, demonstrating its capacity to 
reflect expert hesitation and support balanced national policies. In education, Álvarez Enríquez et al., 
[68] used neutrosophic VIKOR to evaluate child development strategies in Ecuadorian schools. In 
sustainable supply chain management, Luo et al., [69] used SVNS-VIKOR for supplier selection by 
integrating entropy and AHP to improve the reliability of weighting criteria. In criminal justice, 
Paronyan et al., [70] applied the neutrosophic VIKOR method to propose changes to Article 189 of 
Ecuador’s Criminal Code, with the goal of making penalties more proportional to the harm caused. 
In environmental engineering, Kamal et al., [71] applied SVNS-VIKOR to decide on the best 
wastewater treatment technologies while considering both subjective and objective aspects. All 
these studies have shown that neutrosophic VIKOR is effective in helping with decisions that require 
judgment under high uncertain conditions. 
 
3. Preliminaries  

Definition 1. [72] Let X represent a universe or a non-empty set. A Pythagorean neutrosophic set 
characterized by 𝜏 and 𝜂 as its dependent neutrosophic components is defined as follows: 

𝐴 = {(𝑥, 𝜏𝐴(𝑥), 𝜉𝐴(𝑥), 𝜂𝐴(𝑥))|𝑥 ∈ 𝑋} (6) 

Where 𝜏𝐴 denotes the level of membership, 𝜉𝐴 denotes the degree of uncertainty, and 𝜂𝐴 denotes 
the extent of non-membership. All the components 𝜏, 𝜉, 𝜂 should fall between [0,1], and the 
following conditions apply: 

𝜏𝐴(𝑥) + 𝜂𝐴(𝑥) ≤ 1 (7) 

0 ≤ (𝜏𝐴(𝑥))
2
+ (𝜂𝐴(𝑥))

2 ≤ 1 (8) 
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0 ≤ (𝜏𝐴(𝑥))
2
+ (𝜉𝐴(𝑥))

2
+ (𝜂𝐴(𝑥))

2 ≤ 2 (9) 

Definition 2. [73] When considering any two PNSs, denoted as 𝑥1 = (𝜏𝑥1 , 𝜉𝑥1 , 𝜂𝑥1), 𝑥2 =

(𝜏𝑥2 , 𝜉𝑥2 , 𝜂𝑥2) and 𝑥 = (𝜏𝑥, 𝜉𝑥, 𝜂𝑥), the following operational rules apply: 

i. 𝑥1⨁ 𝑥2 = (√𝜏𝑥1
2 + 𝜏𝑥2

2 − 𝜏𝑥1
2𝜏𝑥2

2, 𝜉𝑥1𝜉𝑥2 , 𝜂𝑥1𝜂𝑥2) (10) 

ii. 𝑥1⨂ 𝑥2 = (𝜏𝑥1𝜏𝑥2 , 𝜉𝑥1 + 𝜉𝑥2 − 𝜉𝑥1𝜉𝑥2√𝜂𝑥1
2 + 𝜂𝑥2

2 − 𝜂𝑥1
2𝜂𝑥2

2) (11) 

iii. 𝜇𝑥 = (√1 − (1 − 𝜏𝑥2)𝜇, 𝜉𝑥
𝜇 , 𝜂𝑥

𝜇) where 𝜇 ∈ ℜ  and 𝜇 ≥ 0 (12) 

iv. 𝑥𝜇 = (𝜏𝑥
𝜇, 1 − (1 − 𝜉𝑥)

𝜇, √1 − (1 − 𝜂𝑥2)𝜇) where 𝜇 ∈ ℜ  and 𝜇 ≥ 0 (13) 

 
4. New neutrosophic FIQ distance measure 

The Flexible Indeterminacy Quantifier (FIQ) brings three key improvements to increase how 
distance is measured in a neutrosophic set environment: adaptive weighting, self-regulating 
exponents and dynamic norm selection. The use of adaptive weighting ensures that truth, falsity and 
indeterminacy all have influence that matches their importance, so none is overpowered in 
calculating the distance. Self-adjusting exponents help adjusting the distance measure by either 
highlighting or softening differences based on uncertainty levels. This makes sure that small changes 
are noticeable when uncertainty is low, but avoids overreacting when uncertainty is high. Dynamic 
norms make the indicator more flexible by taking actions similar to Manhattan (p≈1) for high 
uncertainty and then acting like the Euclidean (p≈2) way for low uncertainty. With all these 
mechanisms, FIQ is highly adaptable and considers both uncertainty and robustness, which makes it 
ideal for MCDM and complex environments involving ambiguity. 

Let 𝐴 = (𝜏𝐴, 𝜉𝐴, 𝜂𝐴) and 𝐵 = (𝜏𝐵, 𝜉𝐵, 𝜂𝐵) be two neutrosophic sets, where 𝜏, 𝜉, and 𝜂 represent 
the truth-membership, indeterminacy-membership, and falsity-membership degrees, respectively.  
The Flexible Indeterminacy Quantifier (FIQ) distance is defined as: 

𝑑𝐹𝐼𝑄(𝐴, 𝐵) =
1

3
∑[𝑤𝜏 ∙ (|𝜏𝐴 − 𝜏𝐵|

𝑝𝜏) + 𝑤𝜉 ∙ (|𝜉𝐴 − 𝜉𝐵|
𝑝𝜉) + 𝑤𝜂 ∙ (|𝜂𝐴 − 𝜂𝐵|

𝑝𝜂)]
1
𝑝

𝑛

𝑖=1

 (14) 

where the terms 𝑤𝜏, 𝑤𝜉 and  𝑤𝜂 represent adaptive weights that dynamically scale the 

contribution of each component, and 𝑝𝜏, 𝑝𝜉, 𝑝𝜂 and 𝑝 are power parameters and norm order that 

regulate the sensitivity of the distance to variations in uncertainty. These are defined as follows: 
Adaptive Weights: 

𝑤𝜏 = 1 − 𝜉𝐴𝜉𝐵, 𝑤𝜉 = 1 +
|𝜏𝐴−𝜂𝐵|+|𝜂𝐴−𝜏𝐵|

2
 , 𝑤𝜂 = 1 − 𝜉𝐴𝜉𝐵 

Power parameters: 

𝑝𝜏 = 1 +
𝜉𝐴+𝜉𝐵

2
, 𝑝𝜉 = 2 − |𝜏𝐴 − 𝜂𝐵| , 𝑝𝜂 = 1 +

𝜉𝐴+𝜉𝐵

2
 

Norm order: 
𝑝 = 2 − 𝜉𝐴𝜉𝐵 

And the normalized FIQ distance between two neutrosophic sets, 𝐴 and 𝐵 can be defined as 
follows: 

𝑑𝐹𝐼𝑄
𝑁 (𝐴, 𝐵) =

1

3𝑛
∑[𝑤𝜏 ∙ (|𝜏𝐴 − 𝜏𝐵|

𝑝𝜏) + 𝑤𝜉 ∙ (|𝜉𝐴 − 𝜉𝐵|
𝑝𝜉) + 𝑤𝜂 ∙ (|𝜂𝐴 − 𝜂𝐵|

𝑝𝜂)]
1
𝑝

𝑛

𝑖=1

 (15) 

Here, 𝑛 denotes the number of criteria. 
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This formulation allows the distance measure to dynamically adjust based on the levels of 
indeterminacy and how the elements in a neutrosophic set relate to each other. Thus, this distance 
measure can adapt to better fit different assessment situations. In the FIQ distance formulation, the 
term |𝜏𝐴 − 𝜂𝐵| + |𝜂𝐴 − 𝜏𝐵| is strategically introduced within the adaptive weight 𝑤𝜉 and exponent 

𝑝𝜉 to account for the semantic opposition between the truth and falsity components of two PNSs. 

This expression captures the cross-dimensional conflict by quantifying how far the truth degree of 
one set deviates from the falsity of the other, and vice versa. If the numbers are large, it means there 
is more disagreement and higher uncertainty between the sets. As a result, the indeterminacy 
component is adaptively emphasized by increasing its weight and lowering its exponent, allowing the 
distance measure to become more sensitive in uncertain decision scenarios. Besides, because the 
term is symmetrical, the distance will be equal no matter which set comes first under the interchange 
of A and B, so the symmetry property is always maintained. 

To ensure mathematical validity and applicability within a neutrosophic framework, a distance 
function needs to meet four key properties of a metric space: non-negativity, identity of 
indiscernibles, symmetry, and the triangle inequality. The proposed FIQ distance is examined against 
these properties as follows. 

(DP1) Non-Negativity 
For any two PNSs, 𝐴 and 𝐵, the FIQ distance satisfies: 

𝑑𝐹𝐼𝑄(𝐴, 𝐵) ≥ 0 

This property is met due to the use of absolute difference operators and non-negative power 
functions when computing distance. Since all terms are non-negative and aggregated using a 
generalized 𝑝-norm, the distance value is always non-negative. 

(DP2) Identity of Indiscernibles 
The FIQ distance measure returns a zero value if and only if the two PNSs are identical: 

𝑑𝐹𝐼𝑄(𝐴, 𝐵) = 0 ⇔ 𝐴 = 𝐵  

This condition holds because the absolute value of the difference between the truth, 
indeterminacy and falsity membership degrees is zero for each component only when the relevant 
components in sets A and B are equal. Hence, the distance only equals zero if 𝜏𝐴 = 𝜏𝐵, 𝜉𝐴 = 𝜉𝐵 and 
𝜂𝐴 = 𝜂𝐵. 

(DP3) Symmetry 
The FIQ measure is symmetric with respect to the sets being compared: 

𝑑𝐹𝐼𝑄(𝐴, 𝐵) = 𝑑𝐹𝐼𝑄(𝐵, 𝐴) 

This property is guaranteed by the inherently symmetric structure of the FIQ distance 
formulation, wherein all membership differences are calculated using absolute values and both the 
adaptive weights and scaling exponents are derived from expressions that remain invariant under 
the interchange of sets 𝐴 and 𝐵. 

(DP4) Triangle Inequality 
To prove the Triangle Inequality, we must show that: 

𝑑𝐹𝐼𝑄(𝐴, 𝐶) ≤ 𝑑𝐹𝐼𝑄(𝐴, 𝐵) + 𝑑𝐹𝐼𝑄(𝐵, 𝐶) 

Using the Minkowski inequality: 

(∑|𝑋𝐴 − 𝑋𝐶|
𝑝)

1
𝑝
≤ (∑|𝑋𝐴 − 𝑋𝐵|

𝑝)

1
𝑝
+ (∑|𝑋𝐵 − 𝑋𝐶|

𝑝)

1
𝑝

 

Since FIQ is based on a Minkowski-like norm with dynamically adjusted exponents, we apply this 
property component-wise: 

For the truth component: 
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(𝑤𝜏 ∙ (|𝜏𝐴 − 𝜏𝐶|
𝑝𝜏))

1
𝑝 ≤ (𝑤𝜏 ∙ (|𝜏𝐴 − 𝜏𝐵|

𝑝𝜏))
1
𝑝 + (𝑤𝜏 ∙ (|𝜏𝐵 − 𝜏𝐶|

𝑝𝜏))
1
𝑝 

For the indeterminacy component: 

(𝑤𝜉 ∙ (|𝜉𝐴 − 𝜉𝐶|
𝑝𝜉))

1
𝑝
≤ (𝑤𝜉 ∙ (|𝜉𝐴 − 𝜉𝐵|

𝑝𝜉))

1
𝑝
+ (𝑤𝜉 ∙ (|𝜉𝐵 − 𝜉𝐶|

𝑝𝜉))

1
𝑝

 

For the falsity component: 

(𝑤𝜂 ∙ (|𝜂𝐴 − 𝜂𝐶|
𝑝𝜂))

1
𝑝
≤ (𝑤𝜂 ∙ (|𝜂𝐴 − 𝜂𝐵|

𝑝𝜂))

1
𝑝
+ (𝑤𝜂 ∙ (|𝜂𝐵 − 𝜂𝐶|

𝑝𝜂))

1
𝑝

 

Since each of the three components independently satisfies the triangle inequality, their 
weighted Minkowski sum also adheres to this property. Therefore, the FIQ distance satisfies the 
triangle inequality: 

𝑑𝐹𝐼𝑄(𝐴, 𝐶) ≤ 𝑑𝐹𝐼𝑄(𝐴, 𝐵) + 𝑑𝐹𝐼𝑄(𝐵, 𝐶) 

Hence, property (DP4) is fulfilled. This completes the proof. 
 
5. Pythagorean neutrosophic TOPSIS and VIKOR  

This section introduces the development of the PNTOPSIS and PNVIKOR methodologies, providing 
a clear explanation of their structure and key steps. The overall framework and process of the 
proposed approaches are outlined in detail and visually summarized in Figure 1. 

 
                    Fig. 1. The PNTOPSIS and PNVIKOR framework 
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5.1 PNTOPSIS 
This section introduces PNTOPSIS, a novel adaptation of the classical TOPSIS technique that 

maintains its foundational structure while integrating the PNS framework. This enhancement equips 
the method to effectively capture the uncertainty, indeterminacy, and vagueness inherent in real-
world decision-making scenarios. Designed for MCDM problems, PNTOPSIS offers a structured and 
practical approach for identifying the optimal alternative among multiple options. The 
methodological steps are outlined as follows: 

Step 1. Construct the decision matrix containing scores that demonstrate the ratings or scores of 
each alternative in relation to each criterion. The rating provided by the decision maker assesses how 
well each alternative performs in relation to attribute. Following that, each of these scores is 

transformed into PNS numbers in the form of 𝑥𝑖𝑗
𝑘 = 〈𝜏𝑖𝑗

𝑘 , 𝜉𝑖𝑗
𝑘 , 𝜂𝑖𝑗

𝑘 〉. The rating scale for PNS numbers 

relies on the utilization of nine linguistic scores, employing PNS linguistic variables, as elaborated in 
Table 1. Consider a decision matrix with 𝑚 alternatives and 𝑛 criteria, the form will be as follows: 

𝑋 =

[
 
 
 
 
 
𝑥11 𝑥12 ⋯ 𝑥1𝑗 ⋯ 𝑥1𝑛
𝑥21 𝑥22 ⋯ 𝑥2𝑗 ⋯ 𝑥2𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖1 𝑥𝑖2 ⋯ 𝑥𝑖𝑗 ⋯ 𝑥𝑖𝑛
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑗 ⋯ 𝑥𝑚𝑛]

 
 
 
 
 

 (16) 

              Table 1  

              9-point scale Pythagorean neutrosophic linguistic variable [37] 

Score Linguistic Variable Rating Scale in PNS 

1 Extremely Low Effect (0.05,0.90,0.95) 

2 Very Low Effect (0.10,0.85,0.90) 

3 Low Effect (0.20,0.80,0.75) 

4 Medium Low Effect (0.35,0.65,0.60) 

5 Medium Effect (0.50,0.50,0.45) 

6 Medium High Effect (0.65,0.35,0.30) 

7 High Effect (0.80,0.25,0.20) 

8 Very High Effect (0.90,0.15,0.10) 

9 Extremely High Effect (0.95,0.05,0.05) 

 
Step 2. Aggregate multiple decision matrix into a single decision matrix.  In the process of group 

decision-making, it is essential to merge all individual evaluations into a collective perspective, 
resulting in an aggregated neutrosophic decision matrix. There are multiple aggregating operator 
available for this task. For this study, we will employ the Simple Average method, operating under 
the assumption that all decision-makers are equally important. 

𝑋𝑖𝑗
𝑘 =

1

𝑚
∑(𝜏𝑖𝑗

(𝑝)
, 𝜉𝑖𝑗
(𝑝)
, 𝜂𝑖𝑗
(𝑝)
)

𝑚

𝑝=1

 (17) 

Where 𝑋𝑖𝑗
𝑘  represents the score of the 𝑖th alternative on the 𝑗th criterion given by the 𝑝th decision 

maker. 
Step 3. Normalize the decision matrix (𝑁). Normalization is a process of transforming the various 

criteria scales into a comparable scale. Through normalization, data is transformed to adhere to a 
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consistent standard. In this scenario, the normalized value is scaled between 0 and 1 [74-75]. In this 

study, we modified the 0-1 Interval Normalization [76] in the PNS form of 𝑛𝑖𝑗
𝑘 = 〈𝜏𝑖𝑗

𝑘 , 𝜉𝑖𝑗
𝑘 , 𝜂𝑖𝑗

𝑘 〉. 

𝑛𝑖𝑗 =

{
 
 

 
 (

𝜏𝑖𝑗
𝑘

max 𝜏𝑖𝑗
𝑘 ,

𝜉𝑖𝑗
𝑘

max 𝜉𝑖𝑗
𝑘 ,

𝜂𝑖𝑗
𝑘

max 𝜂𝑖𝑗
𝑘 ) , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

(
min 𝜏𝑖𝑗

𝑘

𝜏𝑖𝑗
𝑘 ,

min 𝜉𝑖𝑗
𝑘

𝜉𝑖𝑗
𝑘 ,

min 𝜂𝑖𝑗
𝑘

𝜂𝑖𝑗
𝑘 ) ,         𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

 (18) 

Step 4. Calculate the weighted normalized decision matrix (𝑁𝑊). Each criterion has their 
respective weightage which can be computed by numerous weighting techniques such as the mean 
weight, standard deviation, statistical variance procedure, Entropy method, CRiteria Importance 
Through Inter-criteria Correlation (CRITIC) and their modifications [77-79]. For the simplicity of this 
study, we employ Mean Weight (MW) method. The mean weight is based on the assumption that 
each criterion holds equal importance.  

𝑊𝑗 =
1

𝑛
 (19) 

Where 𝑛 is the number of criteria.  
Next, each element of the normalized decision matrix is multiplied by its corresponding criteria 

weight as follows: 

𝑋𝑖𝑗
𝑤 = (𝑤𝑗 ∙ 𝜏𝑖𝑗

𝑘 , 𝑤𝑗 ∙ 𝜉𝑖𝑗
𝑘 , 𝑤𝑗 ∙ 𝜂𝑖𝑗

𝑘 ) (20) 

Where 𝑤𝑗 is the weight of the 𝑗th criteria such that 𝑤𝑗 ≥ 0 for 𝑗 = 1,2, … , 𝑛 and ∑ 𝑤𝑗 = 1
𝑛
𝑗=1 . 

Step 5. Determine the Positive Ideal and Negative Ideal Solutions. In practical decision-making, 
there are two types of attributes: benefit-type and cost-type. Let 𝐾1 be the set of benefit-type criteria 
and 𝐾2 the cost-type criteria. 𝑉𝑁

+ is the Pythagorean neutrosophic positive ideal solution (PNPIS) and 
𝑉𝑁
− is the Pythagorean neutrosophic negative ideal solution (PNNIS) which both in the form of 𝑉𝑁 =

(𝜏𝑖𝑗
𝑤, 𝜉𝑖𝑗

𝑤, 𝜂𝑖𝑗
𝑤). 

𝐾1 = {
𝑉𝑁
+ = (𝑚𝑎𝑥{𝜏𝑖𝑗

𝑤},𝑚𝑖𝑛{𝜉𝑖𝑗
𝑤},𝑚𝑖𝑛{𝜂𝑖𝑗

𝑤})

𝑉𝑁
− = (𝑚𝑖𝑛{𝜏𝑖𝑗

𝑤},𝑚𝑎𝑥{𝜉𝑖𝑗
𝑤},𝑚𝑎𝑥{𝜂𝑖𝑗

𝑤})
 (21) 

𝐾2 = {
𝑉𝑁
+ = (𝑚𝑖𝑛{𝜏𝑖𝑗

𝑤},𝑚𝑎𝑥{𝜉𝑖𝑗
𝑤},𝑚𝑎𝑥{𝜂𝑖𝑗

𝑤})

𝑉𝑁
− = (𝑚𝑎𝑥{𝜏𝑖𝑗

𝑤},𝑚𝑖𝑛{𝜉𝑖𝑗
𝑤},𝑚𝑖𝑛{𝜂𝑖𝑗

𝑤})
 (22) 

Step 6. Calculate the distance measure to the PNPIS and PNNIS. For this study, we will use the 
newly introduced distance measure to calculate the separation measure which is FIQ distance 
measure. The normalized equation of this measure, as given in Eq. (15), is utilized for the calculation 
of distance, 𝑆𝑖: 

The normalized FIQ distance for PNPIS: 

𝑆𝑖
+ =

1

3𝑛
∑[𝑤𝜏 ∙ (|𝜏𝑖𝑗

𝑤 − 𝜏𝑗
+|
𝑝𝜏
) + 𝑤𝜉 ∙ (|𝜉𝑖𝑗

𝑤 − 𝜉𝑗
+|
𝑝𝜉) + 𝑤𝜂 ∙ (|𝜂𝑖𝑗

𝑤 − 𝜂𝑗
+|
𝑝𝜂
)]
1
𝑝

𝑛

𝑖=1

 (23) 

The normalized FIQ distance for PNNIS: 

𝑆𝑖
− =

1

3𝑛
∑[𝑤𝜏 ∙ (|𝜏𝑖𝑗

𝑤 − 𝜏𝑗
−|
𝑝𝜏
) + 𝑤𝜉 ∙ (|𝜉𝑖𝑗

𝑤 − 𝜉𝑗
−|
𝑝𝜉) + 𝑤𝜂 ∙ (|𝜂𝑖𝑗

𝑤 − 𝜂𝑗
−|
𝑝𝜂
)]
1
𝑝

𝑛

𝑖=1

 (24) 
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Step 7. Calculate the relative closeness to the Pythagorean neutrosophic ideal solution. The 
relative closeness of the 𝑖th alternative to the ideal solution is defined as: 

𝑃𝑖 =
𝑆𝑖
−

𝑆𝑖
+ + 𝑆𝑖

− (25) 

Where 𝑃𝑖  ranges from 0 to 1. A higher value indicates a closer distance to the positive ideal 
solution. 

Step 8. Rank the alternatives based on their relative closeness. The alternative with the highest 
𝑃𝑖  is regarded as the optimal choice. 
 
5.2 PNVIKOR 

This section presents PNVIKOR, an advanced formulation of the traditional VIKOR method, 
augmented with the PNS framework. The integration of PNS allows the model to better represent 
the imprecision and inconsistency of evaluation data, which are often encountered in MCDM 
contexts. PNVIKOR aims to support the selection of a compromise solution that reflects a balanced 
response to conflicting criteria. The step-by-step procedure is detailed below: 

Steps 1 to 3. The first three steps of PNVIKOR are identical to those of PNTOPSIS, as outlined in 
Section 5.1. These include constructing the decision matrix, aggregating multiple decision matrices, 
and normalizing the data. PNVIKOR then proceeds with the following steps: 

Step 4. Determine the best and worst values for each criterion. For each criterion, determine the 

best (𝑓𝑗
+) and worst (𝑓𝑗

−) values among all alternatives: 

𝑓𝑗
+ = {

      (𝑚𝑎𝑥(𝜏𝑖𝑗),𝑚𝑖𝑛(𝜉𝑖𝑗),𝑚𝑖𝑛(𝜂𝑖𝑗)) , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

(𝑚𝑖𝑛(𝜏𝑖𝑗),𝑚𝑎𝑥(𝜉𝑖𝑗),𝑚𝑎𝑥(𝜂𝑖𝑗)) ,         𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
 (26) 

𝑓𝑗
− = {

      (𝑚𝑖𝑛(𝜏𝑖𝑗),𝑚𝑎𝑥(𝜉𝑖𝑗),𝑚𝑎𝑥(𝜂𝑖𝑗)) , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

(𝑚𝑎𝑥(𝜏𝑖𝑗),𝑚𝑖𝑛(𝜉𝑖𝑗),𝑚𝑖𝑛(𝜂𝑖𝑗)) ,         𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
 (27) 

Step 5. Calculate the utility measure (𝑆𝑖) and individual regret (𝑅𝑖). To obtain these values, the 
FIQ distance measure defined in Eq. (15) is incorporated into the original formulation, resulting in the 
following expression: 

𝑆𝑖 =∑

(

 
 
𝑊𝑗 ∗

[𝑤𝜏 ∙ (|𝜏𝑗
+ − 𝜏𝑖𝑗|

𝑝𝜏)+𝑤𝜉 ∙ (|𝜉𝑗
+ − 𝜉𝑖𝑗|

𝑝𝜉
)+𝑤𝜂 ∙ (|𝜂𝑗

+ − 𝜂
𝑖𝑗|
𝑝𝜂
)]

1
𝑝

[𝑤𝜏 ∙ (|𝜏𝑗
+ − 𝜏𝑗

−|
𝑝𝜏
)+𝑤𝜉 ∙ (|𝜉𝑗

+ − 𝜉𝑗
−
|
𝑝𝜉
)+𝑤𝜂 ∙ (|𝜂𝑗

+ − 𝜂
𝑗
−|
𝑝𝜂
)]

1
𝑝

)

 
 

𝑚

𝑗=1

 (28) 

𝑅𝑖 = 𝑚𝑎𝑥𝑗

(

 
 
𝑊𝑗 ∗

[𝑤𝜏 ∙ (|𝜏𝑗
+ − 𝜏𝑖𝑗|

𝑝𝜏)+𝑤𝜉 ∙ (|𝜉𝑗
+ − 𝜉𝑖𝑗|

𝑝𝜉
)+𝑤𝜂 ∙ (|𝜂𝑗

+ − 𝜂
𝑖𝑗|
𝑝𝜂
)]

1
𝑝

[𝑤𝜏 ∙ (|𝜏𝑗
+ − 𝜏𝑗

−|
𝑝𝜏
)+𝑤𝜉 ∙ (|𝜉𝑗

+ − 𝜉𝑗
−
|
𝑝𝜉
)+𝑤𝜂 ∙ (|𝜂𝑗

+ − 𝜂
𝑗
−|
𝑝𝜂
)]

1
𝑝

)

 
 

 (29) 

Step 6. Compute the VIKOR Index, 𝑄𝑖. To reflect a compromise between group utility and 
individual regret, the 𝑄𝑖 values is computed as follows: 

𝑄𝑖 = 𝑣 ∗
𝑆𝑖 − 𝑆

∗

𝑆− − 𝑆∗
+ (1 − 𝑣)

𝑅𝑖 − 𝑅
∗

𝑅− − 𝑅∗
 (30) 
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Where 𝑆∗ = min 𝑆𝑖, 𝑆
− = max 𝑆𝑖, 𝑅

∗ = min𝑅𝑖, 𝑅
− = max𝑅𝑖, 

𝑣 ∈ [0,1] is the weight of the decision strategy representing the majority rule; typically, 𝑣 = 0.5 
is adopted to achieve a balanced compromise. 

Step 7. Rank the alternatives. All alternatives are ranked independently based on the values of 𝑆𝑖, 
𝑅𝑖, and 𝑄𝑖 in ascending order. The alternative with the lowest 𝑄𝑖 is considered closest to the ideal 
compromise and is provisionally selected as the top-ranked solution. 

Step 8. Propose the compromise solution. The top-ranked alternative based on 𝑄𝑖 value is 
accepted as the compromise solution if it satisfies both of the following conditions: 

Condition 1 - Acceptable advantage.  

𝑄(𝐴2) − 𝑄(𝐴1) ≥ 𝐷𝑄 (31) 

where 𝐷𝑄 =
1

𝑗−1
, 𝑗 is the number of alternatives. 

Condition 2 - Acceptable stability in decision-making. 
The alternative 𝐴1, ranked first according to 𝑄𝑖, must also be ranked first by either 𝑆𝑖 or 𝑅𝑖. If both 

conditions are satisfied, the alternative 𝐴1 is accepted as the compromise solution.  
i. If only Condition 2 is not satisfied, a set of compromise solutions comprising the two 

top-ranked alternatives {𝐴1, 𝐴2} is proposed.  
ii. If Condition 1 is not satisfied, the compromise set includes the top alternatives 𝐴1, 𝐴2, 

…, 𝐴(𝑀) where 𝐴(𝑀)  is determined by the relation 𝑄(𝐴(𝑀)) − 𝑄(𝐴1) < 𝐷𝑄 for 

maximum 𝑀. This ensures that the included alternatives are “in closeness” to the best 
solution, providing a reasonable compromise when the advantage of the top-ranked 
alternative is not sufficiently distinct.       

 
6. Results and discussion 

This section is structured into three interrelated subsections. The first subsection presents a case 
study on digital supplier selection for a Malaysian manufacturing SME, demonstrating the application 
of both PNTOPSIS and PNVIKOR techniques in a practical decision-making context. The second 
subsection provides a detailed comparative study in order to analyze and compare the output of 
these two approaches in multiple dimensions. Finally, in the third subsection, the sensitivity analysis 
is done by using several distance measures and weighting scenarios thus determining how robust 
and responsive the PNTOPSIS and PNVIKOR approaches are to different evaluation scenarios. 

 
6.1 Case Application: Digital Supplier Selection for Manufacturing SMEs 

This subsection presents a case study on digital supplier selection for manufacturing SMEs which 
focus on a mid-sized Malaysian firm that aim to implement an enterprise-grade digital system to 
enhance their operational capabilities. The company seek to identify the most suitable digital 
solutions provider that can facilitates its growth, competitiveness, and seamless digital 
transformation. Choosing the right supplier is a crucial decision that involves multiple factors such as 
the cost of system integration, the reliability of the vendor and the ability to maintain ongoing 
operation. These factors make the choice of the supplier is an economically or technology important 
decision. 

Digital solution providers who participated in the preliminary screening were reduced to five 
participants under the shortlist coded as Supplier 𝑆1 to 𝑆5 based on relevance, past project portfolios, 
and technical capacity. The evaluation process was structured around four key decision criteria that 
express strategic, technical and financial issues: 
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i. C1: System Capability (Benefit) - Assesses how well the system supports business growth 
through key features, scalability, and tech compatibility. 

ii. C2: Vendor Support Quality (Benefit) - Looks at the quality of support, training, and 
updates provided after installation. 

iii. C3: Implementation Cost (Cost) - Covers setup, licensing, and integration costs, aiming to 
keep expenses low. 

iv. C4: Operational Disruption Risk (Cost) - Measures the chance of delays, data issues, or 
workflow problems during rollout. 

The objective is to identify a digital supplier that meets functional and support requirements 
while ensuring cost efficiency and operational continuity which is a crucial balance for SMEs 
navigating digital transformation amid uncertainty. 
 
6.1.1 PNTOPSIS Implementation 

Step 1. Three domain experts, namely the IT Manager, Operations Lead, and Financial Controller, 
participated in the evaluation, each independently assessing the suppliers based on defined criteria. 
These assessments, expressed using a 9-point Likert scale, resulted in three separate decision 
matrices. The components of these matrices are presented in Tables 2 to 4. 

 
       Table 2 
       The decision matrix provided by Expert 1 

 C1 C2 C3 C4 

S1 8 7 1 1 

S2 8 6 4 5 

S3 6 9 3 3 

S4 5 7 2 4 

S5 8 9 4 3 

 
       Table 3 
       The decision matrix provided by Expert 2 

 C1 C2 C3 C4 

S1 7 5 2 1 

S2 9 6 2 4 

S3 5 8 4 5 

S4 9 7 1 3 

S5 6 6 4 4 

 
       Table 4 
       The decision matrix provided by Expert 3 

 C1 C2 C3 C4 

S1 8 9 1 4 

S2 7 7 2 1 

S3 6 8 3 2 

S4 7 5 4 5 

S5 7 8 3 3 

 
Subsequently, the values in the decision matrices are converted into PNS numbers based on the 

linguistic scale provided in Table 1, which employs a 9-point PNS linguistic variable. Tables 5 to 7 
present the decision matrices with the values expressed in PNS numbers. 
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         Table 5 
         The decision matrix in PNS numbers provided by Expert 1 

 C1 C2 C3 C4 

S1 (0.90,0.15,0.10) (0.80,0.25,0.20) (0.05,0.90,0.95) (0.05,0.90,0.95) 

S2 (0.90,0.15,0.10) (0.65,0.35,0.30) (0.35,0.65,0.60) (0.50,0.50,0.45) 

S3 (0.65,0.35,0.30) (0.95,0.05,0.05) (0.20,0.80,0.75) (0.20,0.80,0.75) 

S4 (0.50,0.50,0.45) (0.80,0.25,0.20) (0.10,0.85,0.90) (0.35,0.65,0.60) 

S5 (0.90,0.15,0.10) (0.95,0.05,0.05) (0.35,0.65,0.60) (0.20,0.80,0.75) 

 
         Table 6 
         The decision matrix in PNS numbers provided by Expert 2 

 C1 C2 C3 C4 

S1 (0.80,0.25,0.20) (0.50,0.50,0.45) (0.10,0.85,0.90) (0.05,0.90,0.95) 

S2 (0.95,0.05,0.05) (0.65,0.35,0.30) (0.10,0.85,0.90) (0.35,0.65,0.60) 

S3 (0.50,0.50,0.45) (0.90,0.15,0.10) (0.35,0.65,0.60) (0.50,0.50,0.45) 

S4 (0.95,0.05,0.05) (0.80,0.25,0.20) (0.05,0.90,0.95) (0.20,0.80,0.75) 

S5 (0.65,0.35,0.30) (0.65,0.35,0.30) (0.35,0.65,0.60) (0.35,0.65,0.60) 

 
         Table 7 
         The decision matrix in PNS numbers provided by Expert 3 

 C1 C2 C3 C4 

S1 (0.90,0.15,0.10) (0.95,0.05,0.05) (0.05,0.90,0.95) (0.35,0.65,0.60) 

S2 (0.80,0.25,0.20) (0.80,0.25,0.20) (0.10,0.85,0.90) (0.05,0.90,0.95) 

S3 (0.65,0.35,0.30) (0.90,0.15,0.10) (0.20,0.80,0.75) (0.10,0.85,0.90) 

S4 (0.80,0.25,0.20) (0.50,0.50,0.45) (0.35,0.65,0.60) (0.50,0.50,0.45) 

S5 (0.80,0.25,0.20) (0.90,0.15,0.10) (0.20,0.80,0.75) (0.20,0.80,0.75) 

 
Step 2. The multiple decision matrices are aggregated into a single decision matrix by applying 

Eq. (17). Table 8 presents the resulting aggregated decision matrix. The calculation of the aggregated 
value for Supplier 1 (𝑆1) under Criterion 1 (𝐶1) is illustrated as follows: 

𝑋11 =
1

3
[(0.90,0.15,0.10) + (0.80,0.25,0.20) + (0.90,0.15,0.10)] = (0.87,0.18,0.13) 

       
         Table 8 
         The aggregated decision matrix 

 C1 C2 C3 C4 

S1 (0.87,0.18,0.13) (0.75,0.27,0.23) (0.07,0.88,0.93) (0.15,0.82,0.83) 

S2 (0.88,0.15,0.12) (0.70,0.32,0.27) (0.18,0.78,0.80) (0.30,0.68,0.67) 

S3 (0.60,0.40,0.35) (0.92,0.12,0.08) (0.25,0.75,0.70) (0.27,0.72,0.70) 

S4 (0.75,0.27,0.23) (0.70,0.33,0.28) (0.17,0.80,0.82) (0.35,0.65,0.60) 

S5 (0.78,0.25,0.20) (0.83,0.18,0.15) (0.30,0.70,0.65) (0.25,0.75,0.70) 

 
Step 3. In this step, the aggregated decision matrix is normalized by applying Eq. (18). Table 9 

presents the normalized aggregated decision matrix. The following demonstrates the process of 
calculating the normalized value for Supplier 1 (𝑆1) with respect to Criterion 1 (𝐶1). 

𝑛11 = (
0.87

0.88
,
0.18

0.40
,
0.13

0.35
) = (0.98, 0.46, 0.38) 
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   Table 9 
         The normalized aggregated decision matrix 

 C1 C2 C3 C4 

S1 (0.98,0.46,0.38) (0.82,0.80,0.82) (1.00,0.79,0.70) (1.00,0.80,0.72) 

S2 (1.00,0.38,0.33) (0.76,0.95,0.94) (0.36,0.89,0.81) (0.50,0.95,0.90) 

S3 (0.68,1.00,1.00) (1.00,0.35,0.29) (0.27,0.93,0.93) (0.56,0.91,0.86) 

S4 (0.85,0.67,0.67) (0.76,1.00,1.00) (0.40,0.88,0.80) (0.43,1.00,1.00) 

S5 (0.89,0.63,0.57) (0.91,0.55,0.53) (0.22,1.00,1.00) (0.60,0.87,0.86) 

 
Step 4. Assuming that each criterion holds equal importance, the weight for each criterion is 

calculated using Eq. (19), resulting in 𝑤 = 0.25. Based on these weights, the weighted normalized 
aggregated decision matrix is constructed using Eq. (20). Table 10 presents the weighted normalized 
aggregated decision matrix. The following shows the calculation of the weighted normalized value 
for Supplier 1 (𝑆1) under Criterion 1 (𝐶1). 

𝑛11
𝑤 = (0.25 ∙ 0.98, 0.25 ∙ 0.46, 0.25 ∙ 0.38) = (0.25, 0.11, 0.10) 

         Table 10 
         The weighted normalized aggregated decision matrix 

 C1 C2 C3 C4 

S1 (0.25,0.11,0.10) (0.20,0.20,0.21) (0.25,0.20,0.17) (0.25,0.20,0.18) 

S2 (0.25,0.09,0.08) (0.19,0.24,0.24) (0.09,0.22,0.20) (0.13,0.24,0.23) 

S3 (0.17,0.25,0.25) (0.25,0.09,0.07) (0.07,0.23,0.23) (0.14,0.23,0.21) 

S4 (0.21,0.17,0.17) (0.19,0.25,0.25) (0.10,0.22,0.20) (0.11,0.25,0.25) 

S5 (0.22,0.16,0.14) (0.23,0.14,0.13) (0.06,0.25,0.25) (0.15,0.22,0.21) 

 

Step 5. The PNPIS, 𝑉𝑁
+ and PNNIS, 𝑉𝑁

− values are determined using Eq. (21) and Eq. (22). Table 11 
presents the corresponding values.  

 
         Table 11 
         The PNPIS and PNNIS values 

 C1 C2 C3 C4 

𝑉𝑁
+ (0.25,0.09,0.08) (0.25,0.09,0.07) (0.06,0.25,0.25) (0.11,0.25,0.25) 

𝑉𝑁
− (0.17,0.25,0.25) (0.19,0.25,0.25) (0.25,0.20,0.17) (0.25,0.20,0.18) 

 

Step 6. The distance measures to the PNPIS, 𝑆𝑖
+ and PNNIS, 𝑆𝑖

− are calculated using Eq. (23) and 
Eq. (24). The following illustrates the calculation of the 𝑆𝑖

+ value: 
First, the weight and power parameters are calculated. 

𝑤𝜏 = 1 − (0.11)(0.09) = 0.99 

𝑤𝜉 = 1 +
|0.25 − 0.08| + |0.10 − 0.25|

2
= 1.16 

𝑤𝜂 = 1 − (0.11)(0.09) = 0.99 

𝑝𝜏 = 1 +
0.11 + 0.09

2
= 1.10 

𝑝𝜉 = 2 − |0.25 − 0.08| = 1.84  

𝑝𝜂 = 1 +
0.11 + 0.09

2
= 1.10 

𝑝 = 2 − (0.11)(0.09) = 1.99 
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Next, these parameters are inserted into the 𝑆+ formula. The following calculation is specifically 
for Supplier 1 with respect to Criterion 1. 

𝑆(1,1)
+ = [(0.99)(|0.25 − 0.25|1.10) + (1.16)(|0.11 − 0.09|1.83) + (0.99)(|0.10 − 0.08|1.10)]

1
1.99 = 0.10 

The values of the remaining parameters for calculating Supplier 1 with respect to Criteria 2, 3, 
and 4 are provided in Tables 12 and 13. The complete computation of 𝑆𝑖

+ for Supplier 1 is presented 
below: 

𝑆𝑖
+ =

1

3(4)
∑0.10 + [(0.99)(|0.25 − 0.25|1.10) + (1.16)(|0.11 − 0.09|1.84) + (0.99)(|0.10 − 0.08|1.10)]

1
1.99

𝑛

𝑖=1

+ [(0.98)(|0.20 − 0.25|1.14) + (1.09)(|0.20 − 0.09|1.87) + (0.98)(|0.21 − 0.07|1.14)]
1
1.98

+ [(0.95)(|0.25 − 0.06|1.22) + (1.06)(|0.20 − 0.25|2.00) + (0.95)(|0.17 − 0.25|1.22)]
1
1.95

+ [(0.95)(|0.25 − 0.11|1.22) + (1.04)(|0.20 − 0.25|2.00) + (0.95)(|0.18 − 0.25|1.10)]
1
1.95 

 
                 = 0.1027 

 
     Table 12 

           The weight parameters for the calculation of 𝑆𝑖
+ 

 C1  C2 C3 C4 
 𝑤𝜏 𝑤𝜉  𝑤𝜂  𝑤𝜏 𝑤𝜉  𝑤𝜂  𝑤𝜏 𝑤𝜉  𝑤𝜂  𝑤𝜏  𝑤𝜉  𝑤𝜂  

S1 0.99 1.16 0.99 0.98 1.09 0.98 0.95 1.06 0.95 0.95 1.04 0.95 

S2 0.99 1.17 0.99 0.98 1.07 0.98 0.94 1.15 0.94 0.94 1.12 0.94 

S3 0.98 1.04 0.98 0.99 1.18 0.99 0.94 1.18 0.94 0.94 1.11 0.94 

S4 0.98 1.11 0.98 0.98 1.06 0.98 0.95 1.15 0.95 0.94 1.14 0.94 

S5 0.99 1.12 0.99 0.99 1.14 0.99 0.94 1.19 0.94 0.95 1.10 0.95 

 
Table 13 
The power parameters for the calculation of 𝑆𝑖

+ 
 C1  C2 C3 C4 
 𝑝𝜏 𝑝𝜉  𝑝𝜂  𝑝 𝑝𝜏 𝑝𝜉  𝑝𝜂  𝑝 𝑝𝜏 𝑝𝜉  𝑝𝜂  𝑝 𝑝𝜏 𝑝𝜉  𝑝𝜂  𝑝 

S1 1.10 1.84 1.10 1.99 1.14 1.87 1.14 1.98 1.22 2.00 1.22 1.95 1.22 2.00 1.22 1.95 
S2 1.09 1.83 1.09 1.99 1.16 1.88 1.16 1.98 1.24 1.84 1.24 1.94 1.24 1.88 1.24 1.94 
S3 1.17 1.91 1.17 1.98 1.09 1.82 1.09 1.99 1.24 1.82 1.24 1.94 1.24 1.89 1.24 1.94 
S4 1.13 1.87 1.13 1.98 1.17 1.88 1.17 1.98 1.23 1.85 1.23 1.95 1.25 1.86 1.25 1.94 
S5 1.13 1.86 1.13 1.99 1.11 1.85 1.11 1.99 1.25 1.81 1.25 1.94 1.23 1.90 1.23 1.95 

 
The calculation of 𝑆𝑖

− follows the same procedure. Tables 14 and 15 show the parameters used 
specifically for computing 𝑆𝑖

−, while Table 16 displays the resulting 𝑆𝑖
+ and 𝑆𝑖

− values for each 
alternative. 

 
     Table 14 

           The weight parameters for the calculation of 𝑆𝑖
− 

 C1  C2 C3 C4 
 𝑤𝜏 𝑤𝜉  𝑤𝜂  𝑤𝜏 𝑤𝜉  𝑤𝜂  𝑤𝜏 𝑤𝜉  𝑤𝜂  𝑤𝜏 𝑤𝜉  𝑤𝜂  

S1 0.97 1.04 0.97 0.95 1.03 0.95 0.96 1.08 0.96 0.96 1.07 0.96 
S2 0.98 1.04 0.98 0.94 1.05 0.94 0.96 1.07 0.96 0.95 1.04 0.95 
S3 0.94 1.08 0.94 0.98 1.06 0.98 0.95 1.06 0.95 0.95 1.04 0.95 
S4 0.96 1.02 0.96 0.94 1.06 0.94 0.96 1.06 0.96 0.95 1.04 0.95 
S5 0.96 1.03 0.96 0.97 1.04 0.97 0.95 1.06 0.95 0.96 1.03 0.96 
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Table 15        
The power parameters for the calculation of 𝑆𝑖

− 
 C1  C2 C3 C4 
 𝑝𝜏 𝑝𝜉  𝑝𝜂  𝑝 𝑝𝜏 𝑝𝜉  𝑝𝜂  𝑝 𝑝𝜏 𝑝𝜉  𝑝𝜂  𝑝 𝑝𝜏 𝑝𝜉  𝑝𝜂  𝑝 

S1 1.18 2.00 1.18 1.97 1.23 1.95 1.23 1.95 1.20 1.92 1.20 1.96 1.20 1.93 1.20 1.96 
S2 1.17 2.00 1.17 1.98 1.24 1.94 1.24 1.94 1.21 1.92 1.21 1.96 1.22 1.95 1.22 1.95 
S3 1.25 1.92 1.25 1.94 1.17 2.00 1.17 1.98 1.22 1.89 1.22 1.95 1.21 1.96 1.21 1.95 
S4 1.21 1.96 1.21 1.96 1.25 1.94 1.25 1.94 1.21 1.93 1.21 1.96 1.22 1.93 1.22 1.95 
S5 1.20 1.97 1.20 1.96 1.19 1.98 1.19 1.97 1.22 1.88 1.22 1.95 1.21 1.97 1.21 1.96 

 

    Table 16 
            The 𝑆𝑖

+ and 𝑆𝑖
− values for each alternative 

 𝑆𝑖
+ 𝑆𝑖

− 

S1 0.1027 0.0476 

S2 0.0609 0.0954 

S3 0.0587 0.0913 

S4 0.0790 0.0782 

S5 0.0568 0.1090 

 
Step 7. The relative closeness 𝑃𝑖  to the Pythagorean neutrosophic ideal solution is determined 

using Eq. (25), and the 𝑃𝑖   values for each alternative are presented in Table 17. The following 
demonstrates the calculation of the 𝑃𝑖  value for Supplier 1 (𝑆1). 

𝑃1 =
0.0476

0.1027 + 0.0476
= 0.3167 

     Table 17 

     The 𝑃𝑖   values for each alternative 
 𝑃𝑖  

S1 0.3167 

S2 0.6104 

S3 0.6087 

S4 0.4973 

S5 0.6573 

 

Step 8. The alternatives are ranked according to their relative closeness values, ordered from the 
highest 𝑃𝑖  to the lowest. Table 18 presents the ranking outcomes. 

 
    Table 18 

    The ranking of alternatives based on 𝑃𝑖 values 
 𝑃𝑖  Rank 

S1 0.3167 5 

S2 0.6104 2 

S3 0.6087 3 

S4 0.4973 4 

S5 0.6573 1 

 

6.1.2 PNVIKOR Implementation 
Steps 1 to 3. The initial three steps of the PNVIKOR illustrative example follow the same procedure 

as those in PNTOPSIS, as described in Section 6.1.1. 
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Step 4. The best and worst values, 𝑓𝑗
+ and 𝑓𝑗

− respectively, for each criterion are determined using 

Eq. (26) and Eq. (27). Table 19 summarizes the values. 
 

         Table 19 
         The best and worst values 

 C1 C2 C3 C4 

𝑓𝑗
+ (1.00,0.38,0.33) (1.00,0.35,0.29) (0.22,1.00,1.00) (0.43,1.00,1.00) 

𝑓𝑗
− (0.68,1.00,1.00) (0.76,1.00,1.00) (1.00,0.79,0.70) (1.00,0.80,0.72) 

 
Step 5. Calculate the utility measure (𝑆𝑖) and individual regret (𝑅𝑖). The utility measure, 𝑆𝑖 and 

the individual regret, 𝑅𝑖 are calculated using Eq. (28) and Eq. (29). The weights for each criterion, 𝑤𝑗 

are consistent with those used in the PNTOPSIS method, with 𝑤 = 0.25. The following demonstrates 
the computation of the 𝑆𝑖 value: 

First, the weight and power parameters are calculated. To distinguish between the components 
used in the two parts of Eq. (18), we define the numerator-specific weights and exponents as 𝑤𝜏,𝑛𝑢𝑚, 
𝑤𝜉,𝑛𝑢𝑚, 𝑤𝜂,𝑛𝑢𝑚, 𝑝𝜏,𝑛𝑢𝑚, 𝑝𝜉,𝑛𝑢𝑚, 𝑝𝜂,𝑛𝑢𝑚, 𝑝𝑛𝑢𝑚 and the denominator-specific weights and exponents 

as 𝑤𝜏,𝑑𝑒𝑛, 𝑤𝜉,𝑑𝑒𝑛, 𝑤𝜂,𝑑𝑒𝑛, 𝑝𝜏,𝑑𝑒𝑛, 𝑝𝜉,𝑑𝑒𝑛, 𝑝𝜂,𝑑𝑒𝑛, 𝑝𝑑𝑒𝑛 respectively. 

𝑤𝜏,𝑛𝑢𝑚 = 1 − (0.38)(0.46) = 0.83 

𝑤𝜉,𝑛𝑢𝑚 = 1 +
|1.00 − 0.38| + |0.33 − 0.98|

2
= 1.63 

𝑤𝜂,𝑛𝑢𝑚 = 1 − (0.38)(0.46) = 0.83 

𝑝𝜏,𝑛𝑢𝑚 = 1 +
0.38 + 0.46

2
= 1.42 

 𝑝𝜉,𝑛𝑢𝑚 = 2 − |1.00 − 0.38| = 1.38  

𝑝𝜂,𝑛𝑢𝑚 = 1 +
0.38 + 0.46

2
= 1.42 

𝑝𝑛𝑢𝑚 = 2 − (0.38)(0.46) = 1.83 
𝑤𝜏,𝑑𝑒𝑛 = 1 − (0.38)(1.00) = 0.62 

𝑤𝜉,𝑑𝑒𝑛 = 1 +
|1.00 − 1.00| + |0.33 − 0.68|

2
= 1.17 

𝑤𝜂,𝑑𝑒𝑛 = 1 − (0.38)(1.00) = 0.62 

𝑝𝜏,𝑑𝑒𝑛 = 1 +
0.38 + 1.00

2
= 1.69 

 𝑝𝜉,𝑑𝑒𝑛 = 2 − |1.00 − 1.00| = 2.00  

𝑝𝜂,𝑑𝑒𝑛 = 1 +
0.38 + 1.00

2
= 1.69 

𝑝𝑑𝑒𝑛 = 2 − (0.38)(1.00) = 1.63 
Next, the calculated parameters are substituted into the 𝑆𝑖 formula. The following computation 

specifically pertains to Supplier 1 in relation to Criterion 1. 

𝑆(1,1) = (0.25)(
[(0.83)(|1.00 − 0.98|1.42) + (1.63)(|0.38 − 0.46|1.38) + (0.83)(|0.33 − 0.38|1.42)]

1
1.83

[(0.62)(|1.00 − 0.68|1.69) + (1.17)(|0.38 − 1.00|2.00) + (0.62)(|0.33 − 1.00|1.69)]
1
1.63

) 

            = 0.06 



International Journal of Economic Sciences 

Volume 14, Issue 1 (2025) 351-384 

372 
 

 

The parameter values required to calculate Supplier 1 with respect to Criteria 2, 3, and 4 are 
summarized in Tables 20, 21, 22, and 23. Table 24 presents the computed 𝑆𝑖 and 𝑅𝑖 values. A 
comprehensive demonstration of the 𝑆𝑖 computation for Supplier 1 is provided below. 

𝑆𝑖 = 0.06 + (0.25) (
[(0.72)(|1.00 − 0.82|1.58) + (1.35)(|0.35 − 0.80|1.82) + (0.72)(|0.29 − 0.82|1.58)]

1
1.72

[(0.65)(|1.00 − 0.76|1.68) + (1.23)(|0.35 − 1.00|2.00) + (0.65)(|0.29 − 1.00|1.68)]
1
1.65

)

+ (0.25) (
[(0.21)(|0.22 − 1.00|1.90) + (1.24)(|1.00 − 0.79|1.53) + (0.21)(|1.00 − 0.70|1.90)]

1
1.21

[(0.21)(|0.22 − 1.00|1.90) + (1.24)(|1.00 − 0.79|1.53) + (0.21)(|1.00 − 0.70|1.90)]
1
1.21

)

+ (0.25)(
[(0.20)(|0.43 − 1.00|1.90) + (1.15)(|1.00 − 0.80|1.71) + (0.20)(|1.00 − 0.72|1.90)]

1
1.20

[(0.20)(|0.43 − 1.00|1.90) + (1.15)(|1.00 − 0.80|1.71) + (0.20)(|1.00 − 0.72|1.90)]
1
1.20

) 

      = 0.7600 

Table 20 
The weight parameters utilized in the numerator terms for computing 𝑆𝑖 

 C1  C2 C3 C4 
 𝑤𝜏,𝑛𝑢𝑚 𝑤𝜉,𝑛𝑢𝑚 𝑤𝜂,𝑛𝑢𝑚 𝑤𝜏,𝑛𝑢𝑚 𝑤𝜉,𝑛𝑢𝑚 𝑤𝜂,𝑛𝑢𝑚 𝑤𝜏,𝑛𝑢𝑚 𝑤𝜉,𝑛𝑢𝑚 𝑤𝜂,𝑛𝑢𝑚 𝑤𝜏,𝑛𝑢𝑚 𝑤𝜉,𝑛𝑢𝑚 𝑤𝜂,𝑛𝑢𝑚 

S1 0.83 1.63 0.83 0.72 1.35 0.72 0.21 1.24 0.21 0.20 1.15 0.20 

S2 0.86 1.67 0.86 0.67 1.26 0.67 0.11 1.61 0.11 0.05 1.49 0.05 

S3 0.63 1.17 0.63 0.88 1.71 0.88 0.07 1.72 0.07 0.09 1.43 0.09 

S4 0.75 1.42 0.75 0.65 1.23 0.65 0.13 1.59 0.13 0.00 1.57 0.00 

S5 0.77 1.49 0.77 0.81 1.54 0.81 0.00 1.78 0.00 0.13 1.41 0.13 

 
Table 21 
The power parameters utilized in the numerator terms for computing 𝑆𝑖 

 C1  C2 C3 C4 
 𝑝𝜏,𝑛𝑢𝑚 𝑝𝜉,𝑛𝑢𝑚 𝑝𝜂,𝑛𝑢𝑚 𝑝𝑛𝑢𝑚 𝑝𝜏,𝑛𝑢𝑚 𝑝𝜉,𝑛𝑢𝑚 𝑝𝜂,𝑛𝑢𝑚 𝑝𝑛𝑢𝑚 𝑝𝜏,𝑛𝑢𝑚 𝑝𝜉,𝑛𝑢𝑚 𝑝𝜂,𝑛𝑢𝑚 𝑝𝑛𝑢𝑚 𝑝𝜏,𝑛𝑢𝑚 𝑝𝜉,𝑛𝑢𝑚 𝑝𝜂,𝑛𝑢𝑚 𝑝𝑛𝑢𝑚 

S1 1.42 1.38 1.42 1.83 1.58 1.82 1.58 1.72 1.90 1.53 1.90 1.21 1.90 1.71 1.90 1.20 
S2 1.38 1.33 1.38 1.86 1.65 1.94 1.65 1.67 1.95 1.41 1.95 1.11 1.98 1.53 1.98 1.05 
S3 1.69 2.00 1.69 1.63 1.35 1.29 1.35 1.88 1.97 1.29 1.97 1.07 1.95 1.57 1.95 1.09 
S4 1.52 1.67 1.52 1.75 1.68 2.00 1.68 1.65 1.94 1.43 1.94 1.13 2.00 1.43 2.00 1.00 
S5 1.50 1.57 1.50 1.77 1.45 1.53 1.45 1.81 2.00 1.22 2.00 1.00 1.93 1.57 1.93 1.13 

 
         Table 22 
         The weight parameters utilized in the denominator terms for computing 𝑆𝑖 

C1  C2 C3 C4 

𝑤𝜏,𝑑𝑒𝑛  𝑤𝜉,𝑑𝑒𝑛 𝑤𝜂,𝑑𝑒𝑛 𝑤𝜏,𝑑𝑒𝑛  𝑤𝜉,𝑑𝑒𝑛 𝑤𝜂,𝑑𝑒𝑛 𝑤𝜏,𝑑𝑒𝑛  𝑤𝜉,𝑑𝑒𝑛 𝑤𝜂,𝑑𝑒𝑛 𝑤𝜏,𝑑𝑒𝑛  𝑤𝜉,𝑑𝑒𝑛 𝑤𝜂,𝑑𝑒𝑛 

0.63 1.17 0.63 0.65 1.23 0.65 0.21 1.24 0.21 0.20 1.15 0.20 

 
Table 23 
The power parameters utilized in the denominator terms for computing 𝑆𝑖 

C1  C2 C3 C4 

𝑝𝜏,𝑑𝑒𝑛 𝑝𝜉,𝑑𝑒𝑛 𝑝𝜂,𝑑𝑒𝑛 𝑝𝑑𝑒𝑛 𝑝𝜏,𝑑𝑒𝑛 𝑝𝜉,𝑑𝑒𝑛 𝑝𝜂,𝑑𝑒𝑛 𝑝𝑑𝑒𝑛  𝑝𝜏,𝑑𝑒𝑛 𝑝𝜉,𝑑𝑒𝑛 𝑝𝜂,𝑑𝑒𝑛 𝑝𝑑𝑒𝑛  𝑝𝜏,𝑑𝑒𝑛  𝑝𝜉,𝑑𝑒𝑛 𝑝𝜂,𝑑𝑒𝑛 𝑝𝑑𝑒𝑛 

1.69 2.00 1.69 1.63 1.68 2.00 1.68 1.65 1.90 1.53 1.90 1.21 1.90 1.71 1.90 1.20 
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    Table 24 
            The  𝑆𝑖 and 𝑅𝑖  values for each alternative 

  𝑆𝑖  𝑅𝑖  

S1 0.7600 0.2500 

S2 0.3298 0.2361 

S3 0.3540 0.2500 

S4 0.4945 0.2500 

S5 0.3598 0.1347 

Step 6. Using Eq. (30), the VIKOR index 𝑄𝑖 is computed for each alternative. The results are 
summarized in Table 25. The following illustrates the computation of the 𝑄𝑖 value for Supplier 1 (𝑆1): 

𝑄1 = (0.5) (
0.7600 − 0.3298

0.7600 − 0.3298
) + (1 − 0.5) (

0.2500 − 0.1347

0.2500 − 0.1347
) = 1.0000 

      
     Table 25 

     The 𝑄𝑖  values for each alternative 
 𝑄𝑖  

S1 1.0000 

S2 0.4398 

S3 0.5281 

S4 0.6913 

S5 0.0348 

 
Step 7. The alternatives are ranked independently according to their 𝑄𝑖 values, from the lowest 

to the highest. The alternative with the lowest 𝑄𝑖 represents the ideal compromise solution. Table 
26 displays the ranking results. 

 
    Table 26 

    The ranking of alternatives based on VIKOR Index 
 𝑄𝑖  Rank 

S1 1.0000 5 

S2 0.4398 2 

S3 0.5281 3 

S4 0.6913 4 

S5 0.0348 1 

 
Step 8. The compromise solution for the PNVIKOR method was determined based on the three 

core measures: 𝑆𝑖 (group utility), 𝑅𝑖 (individual regret), and 𝑄𝑖 (composite index). As shown in Table 
18, Supplier 5 (𝑆5) emerged as the best compromise solution, attaining the lowest value of 𝑄𝑖 =
0.0348, which is significantly better than the second-best supplier, 𝑆2 (𝑄𝑖 = 0.4398). This is a strong 
indicator of its superiority across the decision criteria. 

To validate the robustness of this solution, two compromise conditions of the PNVIKOR method 
must be examined: 

Condition 1 - Acceptable Advantage: 
𝑄(𝐴2) − 𝑄(𝐴1) ≥ 𝐷𝑄 

𝑄(𝑆2) − 𝑄(𝑆5) = 0.4398 − 0.0348 = 0.4050 ≥
1

5 − 1
= 0.25  

Thus, Condition 1 is satisfied. 
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Condition 2 - Acceptable stability in decision making: 
Supplier 5 (𝑆5) should also be ranked the best in either 𝑆𝑖 or 𝑅𝑖. In this case, 𝑆5 has the lowest 

𝑅𝑖 = 0.1347, indicating minimal individual regret across all criteria. Therefore, Condition 2 is also 
satisfied. 

Since both conditions are fulfilled, Supplier 5 (𝑆5)  is accepted as the unique compromise solution. 
The dominance of 𝑆5 is reinforced by its balanced performance in both group satisfaction and 
individual regret measures, indicating that it not only offers collective benefit but also minimizes 
dissatisfaction among stakeholders. 

 
6.2 Comparative Analysis 

This section presents a comparative evaluation of the PNTOPSIS and PNVIKOR methods, focusing 
on their effectiveness in ranking decision alternatives. Table 27 displays the ranking outcomes of 
PNTOPSIS and PNVIKOR. 

 

    Table 27 
           The PNTOPSIS and PNVIKOR result comparison 

 PNTOPSIS Rank PNVIKOR Rank 

S1 0.3167 5 1.0000 5 

S2 0.6104 2 0.4398 2 

S3 0.6087 3 0.5281 3 

S4 0.4973 4 0.6913 4 

S5 0.6573 1 0.0348 1 

 
The comparative analysis between the PNTOPSIS and PNVIKOR methods reveals consistent 

rankings and insightful methodological contrasts within the Pythagorean neutrosophic decision-
making framework. Both methods unanimously identify the best and worst-performing alternatives. 
Supplier 5 (𝑆5) is consistently ranked first, while Supplier 1 (𝑆1) holds the lowest rank in both 
approaches. This strong alignment underscores the robustness of these alternatives under different 
computational logics. Specifically, 𝑆5 demonstrates high closeness to the ideal solution in PNTOPSIS 
(score: 0.6573) and minimal regret in PNVIKOR (score: 0.0348), whereas 𝑆1 exhibits the weakest 
performance across all criteria.  

Beyond the extremes, alternatives 𝑆2, 𝑆3, and 𝑆4 also retain their respective rankings, namely 
second, third, and fourth, in both methods. Despite slight variations in their numerical scores, with 
PNTOPSIS offering a tighter range (0.3167 to 0.6573) and PNVIKOR a more dispersed one (0.0348 to 
1.0000), the preservation of rank order indicates stable mid-tier performance. The absence of ranking 
conflicts suggests that the decision-making criteria are well-balanced and that the two methods 
complement each other in identifying the optimal choice. 

However, a deeper examination of the score distributions reveals meaningful methodological 
contrasts between the two decision-making approaches. PNTOPSIS calculates the relative closeness 
of each alternative to the ideal and negative-ideal solutions using geometric distances, resulting in 
proportionally scaled scores. This design helps ensure balanced evaluations by focusing on how close 
each option comes to the optimal outcome. On the other hand, PNVIKOR includes group utility and 
individual regret under its scope and favors compromising arrangements. This formulation causes it 
to highlight flaws in an alternative’s performance by penalizing alternatives with poor outcomes in 
any single criterion. This can be seen in the more pronounced score separation between 𝑆5 and the 
other alternatives under PNVIKOR than the smoother separation in PNTOPSIS. Theoretically, these 
methods reflect distinct philosophies where PNTOPSIS supports holistic decision-making advantages 
designed for those that prefer balanced performance, while PNVIKOR is better suited for cases that 
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need fairness and want to mitigate dissatisfaction in every criterion. While both methods produce 
the same rankings in this analysis, the way they score reveals subtle differences in how performance 
is interpreted. 

To validate these conceptual distinctions, a statistical comparison was carried out to test whether 
the outcomes matched one another. To be specific, the Pearson correlation coefficient between the 
results of PNTOPSIS and PNVIKOR was calculated, yielding a value of –0.9100. The strong negative 
correlation shows a steady inverse relationship between the two methods, which makes sense given 
their scoring styles. PNTOPSIS gives higher scores to better alternatives, while PNVIKOR gives lower 
scores. The negative sign does not indicate disagreement but it simply reflects that the two methods 
rank performance in opposite directions. If the correlation is close to zero, it would suggest that the 
rankings are inconsistent. On the other hand, a strong positive correlation would go against the core 
idea behind PNVIKOR. Therefore, this near-perfect inverse relationship shows that, even though the 
two methods use different calculations, they still arrive at the same decision outcome. The fact that 
both methods lead to the same outcome adds to the reliability of the results, highlighting how 
PNTOPSIS and PNVIKOR complement each other in assessing the alternatives from different angles. 

 

6.3 Sensitivity Analysis 
This section presents a sensitivity analysis to evaluate the reliability and robustness of the 

PNTOPSIS and PNVIKOR methodologies. The analysis is based on the results obtained by using three 
different distance measures: the FIQ distance, PN-Hamming distance and PN-Euclidean distance. In 
addition to varying the distance metrics, the analysis also incorporates five distinct weightage 
scenarios to reflect different decision-making priorities, including equal importance, quality-focused, 
cost-conscious, balanced, and logistics-sensitive preferences. Tables 28 and 29 present the results 
for PNTOPSIS and PNVIKOR using the selected distance metrics. To make the comparison easier to 
understand, the rankings are also shown visually in Figures 2 and 3. This evaluation helps confirm the 
stability of the results and the robustness of the methods with different performance indicators. 

Table 28 and Figure 2 provide the outcomes obtained when using FIQ, PN-Hamming, and PN-
Euclidean distance in the PNTOPSIS model. All three measures give the same outcomes, where 
alternative 𝑆5 is chosen as the most preferred and 𝑆2 is second, followed by 𝑆3, 𝑆4, and 𝑆1. Having a 
similar ranking with different distances reveals that the decision-making process is reliable and not 
affected by the distance itself. 

Even though the rankings do not change, there are notable differences in the computed relative 
closeness values. Values generated by the FIQ distance lie between 0.3167 and 0.6573 which shows 
the distribution is fairly compact. PN-Hamming shows the widest score range, from 0.3412 to 0.7161, 
which indicates a clearer distinction between the best and worst alternatives. In contrast, PN-
Euclidean has the smallest range, from 0.4122 to 0.7053 due to its use of squaring tends to reduce 
noticeable differences. Because of this squaring, the impact of unusual deviations is tamed and the 
values are compressed. Since PN-Hamming has broader gap, it partly exaggerates differences, while 
FIQ presents a more nuanced and balanced comparison of the concepts. The main feature of FIQ is 
that it can adjust its weighting and non-linear scaling that adjust based on the level of indeterminacy 
in the data. This makes it especially effective in situations where information is not certain. In 
contrast, PN-Hamming and PN-Euclidean treat truth, indeterminacy, and falsity in a fixed and uniform 
way, leading to a more rigid and straightforward evaluation. 
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         Table 28 
                The performance of PNTOPSIS method using FIQ, PN-Hamming, and 

         PN-Euclidean distances 
 FIQ PN-Hamming PN-Euclidean 

S1 0.3167 0.3412 0.4122 

S2 0.6104 0.6145 0.5748 

S3 0.6087 0.6099 0.5741 

S4 0.4973 0.4819 0.4777 

S5 0.6573 0.7161 0.7053 

 

 
       Fig. 2. Comparison of PNTOPSIS rankings across three distance measures 

 
         Table 29 

                The performance of PNVIKOR method using FIQ, PN-Hamming, and 
         PN-Euclidean distances 

 FIQ PN-Hamming PN-Euclidean 

S1 1.0000 1.0000 1.0000 

S2 0.4398 0.5652 0.6017 

S3 0.5281 0.6291 0.7222 

S4 0.6913 0.7486 0.7767 

S5 0.0348 0.0000 0.0000 

 

 
       Fig. 3. Comparison of PNVIKOR rankings across three distance measures 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S1 S2 S3 S4 S5

FIQ PN-HAMMING PN-EUCLIDEAN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S1 S2 S3 S4 S5

FIQ PN-HAMMING PN-EUCLIDEAN



International Journal of Economic Sciences 

Volume 14, Issue 1 (2025) 351-384 

377 
 

 

Table 29 and Figure 3 summarize the application of the same three distance measures in the 
PNVIKOR method. Once again, the rankings are identical for all methods, with 𝑆5 ranked as the best 
alternative, followed by 𝑆2, 𝑆3, 𝑆4, and 𝑆1. This reaffirms the stability of the decision-making 
framework across different distance functions. 

Despite uniform rankings, the distance values vary slightly. FIQ produces values from 0.0348 to 
1.0000, while PN-Hamming ranges from 0.0000 to 1.0000, and PN-Euclidean from 0.0000 to 1.0000 
as well. In all methods, 𝑆5 achieves the lowest score, making it the ideal alternative in all cases, while 
𝑆1 registers the highest score, confirming it as the worst-performing alternative.  

Overall, even though all three distance measures produce the same ranking, their numerical 
distance value differ slightly due to their internal calculation of the distances. Since the FIQ method 
is adaptable, it might be preferred in complex and indeterminate environments. On the other hand, 
PN-Hamming typically provide clearer separation between alternatives because of its linear 
sensitivity to differences in each component. This can be especially useful in situations where precise 
distinctions are needed. Meanwhile, although PN-Euclidean is more conservative in capturing 
variations, it still produces consistent ranking results, which might be a better choice in situations 
where it is important to reduce the influence of outliers.  

Next, to make sure the framework works well in different situations, five different weighting 
scenarios were tested. Each scenario was carefully created to reflect how different stakeholders 
might see the problem and what they might value most. These scenarios are explained as follows: 

i. C1: Equal weighting across all criteria 
ii. C2: Emphasis on product quality and variety 

iii. C3: Focus on cost efficiency and pricing sensitivity 
iv. C4: Balanced trade-off with slight preference for quality attributes 
v. C5: Logistics and delivery cost-focused prioritization 

Table 30 provides an overview of the criteria weight sets used in the sensitivity analysis, each one 
reflecting a different decision-making viewpoint. 

Tables 31 and 32 display the outcomes of PNTOPSIS and PNVIKOR under five distinct weight 
configurations. For clearer comparison, these results are also illustrated in Figures 4 and 5. 

As shown in Table 31 and Figure 4, the sensitivity analysis of the PNTOPSIS method under five 
different weighting scenarios shows a high degree of ranking stability. Regardless of which criteria 
are emphasized, Supplier 5 (𝑆5) consistently emerges as the top performer, making it a clear front-
runner across all scenarios. This consistent success suggests that 𝑆5 is a strong all-around option that 
holds up well even when stakeholder priorities shift. On the other hand, Supplier 1 (𝑆1) consistently 
ranks at the bottom, pointing to overall weak performance across the evaluated dimensions. 
Sometimes 𝑆2 takes second place and 𝑆3 takes third, but 𝑆2 usually does better in situations where 
benefits are important and 𝑆3 is a bit better when aiming for low costs. Supplier 4 (𝑆4) consistently 
stays in the fourth position, indicating a stable yet unremarkable performance that falls short of 
competing with the leading suppliers.  

 
               Table 30 

                      The weights used in each scenario 
 𝑤1 𝑤2 𝑤3 𝑤4 

C1 0.25 0.25 0.25 0.25 

C2 0.40 0.30 0.15 0.15 

C3 0.15 0.15 0.35 0.35 

C4 0.35 0.25 0.20 0.20 

C5 0.20 0.20 0.25 0.35 
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These outcomes underscore the robustness and discriminatory strength of the PNTOPSIS method, as its 
ranking results remain consistent despite changes in weight configurations. This consistency makes it highly 
suitable for practical decision making where stability in preference is essential. 

 
  Table 31 
  The PNTOPSIS results under five different weight scenarios 

 C1 C2 C3 C4 C5 

S1 0.3167 0.3639 0.2808 0.3471 0.3019 
S2 0.6104 0.6069 0.6351 0.6195 0.6231 
S3 0.6087 0.5631 0.6363 0.5748 0.6190 
S4 0.4973 0.4564 0.5449 0.4825 0.5208 
S5 0.6573 0.6330 0.6810 0.6451 0.6653 

 

 
      Fig. 4. Comparison of PNTOPSIS scores across weight scenarios 

 
  Table 32 
  The PNVIKOR results under five different weight scenarios 

 C1 C2 C3 C4 C5 

S1 1.0000 0.5590 1.0000 0.5352 1.0000 

S2 0.4398 0.1837 0.0000 0.1471 0.1081 

S3 0.5281 0.7065 0.0395 0.6633 0.1695 

S4 0.6913 0.6677 0.1025 0.4935 0.2537 

S5 0.0348 0.1415 0.0286 0.1096 0.0568 

 
In contrast, Table 32 and Figure 5 show that the PNVIKOR method is more sensitive to changes in criterion 

weights, leading to noticeable shifts in how the alternatives are ranked. While Supplier 5 (𝑆5) generally 
performs well, it does not consistently hold the top position under every weighting scenario. Suppliers like 𝑆2, 
𝑆3, and 𝑆4 frequently trade places, depending on which criteria are given more emphasis. Supplier 1 (𝑆1), 
which consistently finishes at the bottom in the PNTOPSIS results, shows a more mixed performance in 
PNVIKOR. While it still ranks last in several scenarios like 𝐶1, 𝐶3, and 𝐶5, it manages to perform slightly better 
in others, such as 𝐶2 and 𝐶4, where it edges out at least one other supplier. 
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      Fig. 5. Comparison of PNVIKOR scores across weight scenarios 

 
This indicates that while 𝑆1 generally struggles to compete, it can occasionally benefit from 

specific weighting conditions in the PNVIKOR method, allowing it to perform slightly better when 
certain criteria are given more importance. This variability is mainly caused by the PNVIKOR’s 
compromise-based approach, which balances two key aspects: group utility (𝑆𝑖) and individual regret 
(𝑅𝑖). The final ranking is determined by the 𝑄𝑖 value, which combines both measures according to 
each scenario assumed weightings. As a result, even slight changes in the importance of certain 
criteria can shift the balance between utility and regret. This produces noticeable changes in the 𝑄𝑖 
values and sometimes even altering the overall rankings. PNVIKOR relies on the best and worst 
performance values as benchmarks during normalization that makes it becomes particularly reactive 
when supplier scores are closely matched and makes the method more sensitive to weight changes. 
Overall, this characteristic makes PNVIKOR a strong choice when fairness and balanced compromise 
across all criteria are central to the decision-making process.  

Therefore, these methods uphold their critical differences: PNTOPSIS works best where 
dominance matters, while PNVIKOR is more adaptable and able to capture the effects of different 
stakeholder priorities. This comparison emphasizes the value of choosing a method that aligns with 
the specific goals of the decision-making process. If the aim is to maintain consistency and overall 
dominance, PNTOPSIS is the better choice. However, when one prefers a more balanced and 
compromise focused evaluation that reflects diverse priorities, PNVIKOR proves to be the more 
suitable choice. 

 
7. Conclusions 

This study proposed a decision-making framework for digital supplier selection in manufacturing 
SMEs which integrates Pythagorean neutrosophic set (PNS) with TOPSIS and VIKOR and further 
enhanced by a novel Flexible Indeterminacy Quantifier (FIQ) distance measure. The framework was 
applied to a case study involving the evaluation of multiple digital solution providers thus capturing 
the complexity and uncertainty that often characterize SME digitalization decisions. 

As indicated in the case study, the PNTOPSIS and PNVIKOR approaches produced unified and solid 
results. The two strategies were close when it came to finding the topmost as well as the worst-
ranking suppliers confirming the usefulness of the suggested decision-making model in resolving 
conflicting criteria in a state of uncertainty. The best overall provider of digital solutions was Supplier 
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𝑆5, who provided the optimal technical prowess, stable product support, cost-effectiveness, and lack 
of integration difficulty and risk of operational chaos. 

One important feature of the study was the use of the FIQ distance. It changes its weights and 
scaling based on the level of indeterminacy in expert input. Compared to traditional distance 
measures, FIQ offered a more refined way to capture hesitation and uncertainty in evaluations. This 
results in a smoother score distributions and clearer differences between alternatives. These 
qualities are valuable in decision-making situation that involves subjective judgment. Sensitivity 
analysis shows that PNTOPSIS remain stable when weight changed, while PNVIKOR respond well to 
shifting priority. Together, these methods and the FIQ distance provides a solid approach for both 
fixed and flexible decision-making need.  

In conclusion, the proposed framework support more informed and transparent digital supplier 
selection in manufacturing SMEs. It upgrades decision quality in context where uncertainty is 
significant, and lay the groundwork for future development involving more dynamic and data-driven 
evaluation tool. In the future, this framework could be improved by using objective weighting 
methods and real-time analytics. This would make it more useful for both long-term strategic 
planning and everyday operational decisions. These kinds of advancements can help strengthen the 
theoretical base of neutrosophic MCDM and make it more practical for real-world use. By doing so, 
it can better support decisions that are not only strategic but also fair and sustainable, especially in 
the fields of economics and management. 
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