Economics of the Fish Processing Industry: Applying the Beneish M-Score Model

Authors

DOI:

https://doi.org/10.31181/ijes1412025183

Keywords:

Economic Indicators, Financial Fraud Detection, Frozen Fish, Accounting Manipulation

Abstract

Financial statement manipulation has been a practice since the dawn of commerce, resulting in substantial financial losses that have a significant impact on the market. Various factors can lead to such behaviour, such as economic downturns or strong competitive pressures, which affect all sectors of the economy. One of these sectors, the frozen fish industry, stands out in Galicia (Spain) because of its importance due to its strategic location, with a large number of companies integrated into this commercial sector. One of these companies, Hiperxel S.L., was one of the best known for its development and size of business, but this did not prevent it from going bankrupt in 2023, an event that the Spanish Tax Agency considers to be the result of a multi-million-euro fraud. This study analyses the likelihood of fraud committed by this company through the Beneish model and shows index results that support this theory, as a Beneish M-score of 4.137 and -1.127 was obtained in 2019 and 2021, respectively, data that confirm the possible existence of financial statement manipulation before the collapse of Hiperxel S.L.

Downloads

Download data is not yet available.

Author Biography

  • Félix Puime-Guillén, Department of Business, University of A Coruña, A Coruña, Spain

    Licenciado en Ciencias Económicas y Empresariales por la Universidad de Santiago de Compostela.
    Doctor en Administración y Dirección de Empresas por la Universidad de Vigo.
    Profesor Doctor del Departamento de Empresa de la Universidade da Coruña.
    Autor de numerosas publicaciones en revistas especializadas en finanzas.
    Ponente en congresos científicos nacionales e internacionales.
    Cuenta con más de 35 años de experiencia profesional como gestor y consultor en el ámbito empresarial, tanto a nivel nacional como internacional, en el ámbito de las finanzas corporativas.

References

Sanad, Z., & Al-Sartawi, A. (2021). Financial statements fraud and data mining: A review. In A. M. A. Musleh Al-Sartawi, A. Razzaque, & M. M. Kamal (Eds.), Artificial intelligence systems and the Internet of Things in the digital era (Vol. 239, pp. 407-414). Springer International Publishing. https://doi.org/10.1007/978-3-030-77246-8_38

Smith, A. (2002). An inquiry into the nature and causes of the wealth of nations. In N. W. Biggart (Ed.), Readings in economic sociology (1st ed., pp. 6-17). Wiley. https://doi.org/10.1002/9780470755679.ch1

Roszkowska, P. (2021). Fintech in financial reporting and audit for fraud prevention and safeguarding equity investments. Journal of Accounting & Organizational Change, 17(2), 164-196. https://doi.org/10.1108/JAOC-09-2019-0098

Davidson, R. H. (2022). Who did it matters: Executive equity compensation and financial reporting fraud. Journal of Accounting and Economics, 73(2-3), 101453. https://doi.org/10.1016/j.jacceco.2021.101453

ACFE. (2024). Occupational fraud 2024: A report to the nations. https://www.acfe.com/-/media/files/acfe/pdfs/rttn/2024/2024-report-to-the-nations.pdf

Ozili, P. K. (2021). Accounting and financial reporting during a pandemic. In E. Özen, S. Grima, & R. D. Gonzi (Eds.), New challenges for future sustainability and wellbeing (pp. 87-93). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80043-968-920211005

Banco de España. (2024). Estadísticas. https://www.bde.es/webbde/es/estadis/infoest/temas/sb_mercaemi.html#anclaB31

Al-Faryan, M. A. S. (2024). Agency theory, corporate governance and corruption: An integrative literature review approach. Cogent Social Sciences, 10(1), 2337893. https://doi.org/10.1080/23311886.2024.2337893

AEECF. (2023). *Informe anual de tendencias de Fraude en empresas en España 2022/2023*. https://asociacioncontraelfraude.com/informe-anual-de-fraude/

Van Driel, H. (2019). Financial fraud, scandals, and regulation: A conceptual framework and literature review. Business History, 61(8), 1259-1299. https://doi.org/10.1080/00076791.2018.1519026

Ramos Montesdeoca, M., Sánchez Medina, A. J., & Blázquez Santana, F. (2019). Research topics in accounting fraud in the 21st century: A state of the art. Sustainability, 11(6), 1570. https://doi.org/10.3390/su11061570

Kadhim, Y. A., & Al Ani, S. A. M. (2024). The effect of using an accounting information system based on artificial intelligence in detecting earnings management to enhance the sustainability of economic units. In A. Hamdan & A. Harraf (Eds.), Business development via AI and digitalization: Volume 2 (pp. 323-336). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-62106-2_26

Ministerio de Agricultura, Pesca, y Alimentación. (2023). Estadísticas pesqueras. Industrias de productos de la pesca. Indicadores económicos. https://www.mapa.gob.es/es/estadistica/temas/estadisticas-pesqueras/2022_01_empresas_tcm30-121865.pdf

Gunasegaran, M., Basiruddin, R., Abdul Rasid, S. Z., & Mohd Rizal, A. (2018). The case studies of fraud prevention mechanisms in the Malaysian medium enterprises. Journal of Financial Crime, 25(4), 1024-1038. https://doi.org/10.1108/JFC-05-2017-0034

Saluja, S. (2024). Identity theft fraud- major loophole for FinTech industry in India. Journal of Financial Crime, 31(1), 146-157. https://doi.org/10.1108/JFC-08-2022-0211

Yokoyama, M. (2018). Fraud and fraudulent business practices related to the East Japan earthquake. In P. C. Kratcoski & M. Edelbacher (Eds.), Fraud and corruption (pp. 83-107). Springer International Publishing. https://doi.org/10.1007/978-3-319-92333-8_5

Zou, W. (2016). Analysis of financial fraud of listed company in China: A case study of Dandong Xintai Electric Co., Ltd. American Journal of Industrial and Business Management, 6(9). https://doi.org/10.4236/ajibm.2016.69090

Amin, E. (2019). Financial fraud detection of the Egyptian companies annual reports using artificial bee colony algorithm. International Journal of Business and Data Analytics, 1(2), 184. https://doi.org/10.1504/IJBDA.2019.104163

Nyakarimi, S. (2022). Probable earning manipulation and fraud in banking sector. Empirical study from East Africa. Cogent Economics & Finance, 10(1), 2083477. https://doi.org/10.1080/23322039.2022.2083477

Agostini, M., & Favero, G. (2017). Accounting fraud, business failure and creative auditing: A microanalysis of the strange case of the Sunbeam Corporation. Accounting History, 22(4), 472-487. https://doi.org/10.1177/1032373217718871

Schwartz, F. W., Lee, S., & Darrah, T. H. (2021). A review of health issues related to child labor and violence within artisanal and small-scale mining. GeoHealth, 5(2), e2020GH000326. https://doi.org/10.1029/2020GH000326

Popa (Sabău), A., Achim, M. V., & Teusdea, A. C. (2024). Corporate governance and financial fraud occurrence – case study on Romanian companies. The Journal of Risk Finance, 25(3), 489-509. https://doi.org/10.1108/JRF-10-2023-0257

Repousis, S. (2016). Using Beneish model to detect corporate financial statement fraud in Greece. Journal of Financial Crime, 23(4), 1063-1073. https://doi.org/10.1108/JFC-11-2014-0055

HernÁndez, O. H. (2012). Fraud under the sun: A case study of account manipulation in the renewable energy sources industry. In J. T. Wells (Ed.), Financial statement fraud casebook (1st ed., pp. 217-226). Wiley. https://doi.org/10.1002/9781119200994.ch23

Ramírez, F. J., Honrubia-Escribano, A., Gómez-Lázaro, E., & Pham, D. T. (2018). The role of wind energy production in addressing the European renewable energy targets: The case of Spain. Journal of Cleaner Production, 196, 1198-1212. https://doi.org/10.1016/j.jclepro.2018.06.102

Robina-Ramírez, R., Isabel Sánchez-Hernández, M., & Díaz-Caro, C. (2021). Hotel manager perceptions about corporate compliance in the tourism industry: An empirical regional case study in Spain. Journal of Management and Governance, 25(2), 627-654. https://doi.org/10.1007/s10997-020-09514-0

Fernández-González, R., Pérez-Pérez, M. I., & Garza-Gil, M. D. (2022). COVID-19 and the Spanish Celtic Sea fishery: An economic analysis. Marine Policy, 143, 105204. https://doi.org/10.1016/j.marpol.2022.105204

European Commission. Joint Research Centre. (2022). Scientific, Technical and Economic Committee for Fisheries (STECF): Economic report on the fish processing industry (STECF 21 14). Publications Office. https://data.europa.eu/doi/10.2760/715841

Carmona, X. (2022). Changes in the Spanish fish-canning industry since Spain’s entry to the European Union. Ocean & Coastal Management, 216. https://doi.org/10.1016/j.ocecoaman.2021.105972

Fernández-González, R., Pérez-Vas, R., Pérez-Pérez, M., Pereira, Z. G. T., Puime-Guillén, F., & Casas, R. M. R. (2024). Resilience and adaptation: Galician canning fish industry evolution. Marine Policy, 163, 106087. https://doi.org/10.1016/j.marpol.2024.106087

Fernández-González, R., Teixeira Pereira, Z. G., & Ricoy-Casas, R. M. (2024). Governance of the circular economy in the canned fish industry: A case study from Spain. Environmental Technology & Innovation, 34, 103618. https://doi.org/10.1016/j.eti.2024.103618

Puime-Guillén, F., Pérez-Vas, R., & Fernández-González, R. (2022). Sustainability, innovation and diversification in the Spanish frozen food industry: A financial analysis. In C. Machado & J. P. Davim (Eds.), Sustainability and intelligent management (pp. 149-160). Springer International Publishing. https://doi.org/10.1007/978-3-030-98036-8_7

Bureau Van Dijk Electronic Publishing group. (2024). Orbis | Company information across the globe | BvD. https://orbiseurope.bvdinfo.com/version-2021923/orbis4europe/Companies/Login?returnUrl=%2Fversion-2021923%2Forbis4europe%2FCompanies

Alimarket. (2024). «Hiperxel» alcanza las 25 tiendas de congelados apenas un año después de su reapertura. Alimarket.es. https://www.alimarket.es/alimentacion/noticia/398884/-hiperxel--alcanza-las-25-tiendas-de-congelados-apenas-un-ano-despues-de-su-reapertura

Conxemar. (2022). Informe Sectorial de la Industria y Comercialización de Productos Pesqueros en España. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.conxemar.com/wp-content/uploads/2022/12/informe_conxemar_2022.pdf

Bansal, M. (2023). Earnings management: A three-decade analysis and future prospects. Journal of Accounting Literature, 46(4), 630-670. https://doi.org/10.1108/JAL-10-2022-0107

Beneish, M. D. (2001). Earnings management: A perspective. Managerial Finance, 27(12), 3-17. https://doi.org/10.1108/03074350110767411

Dichev, I. D., Graham, J. R., Harvey, C. R., & Rajgopal, S. (2013). Earnings quality: Evidence from the field. Journal of Accounting and Economics, 56(2, Supplement 1), 1-33. https://doi.org/10.1016/j.jacceco.2013.05.004

Goel, S. (2012). Demystifying earnings management through accruals management: An Indian corporate study. Vikalpa. https://doi.org/10.1177/0256090920120104

Hammami, A., & Hendijani Zadeh, M. (2022). Predicting earnings management through machine learning ensemble classifiers. Journal of Forecasting, 41(8), 1639-1660. https://doi.org/10.1002/for.2885

Jackson, A. B. (2018). Discretionary accruals: Earnings management ... or not? Abacus, 54(2), 136-153. https://doi.org/10.1111/abac.12117

Odonkor, B., Kaggwa, S., Uwaoma, P. U., Hassan, zeez O., & Farayola, O. A. (2024). A review of U.S. management accounting evolution: Investigating shifts in tools and methodologies in light of national business dynamics. World Journal of Advanced Research and Reviews, 21(1), 189-204. https://doi.org/10.30574/wjarr.2024.21.1.2722

Nguyen, L. A., O’Connell, B., Kend, M., Pham, V. A. T., & Vesty, G. (2021). The likelihood of widespread accounting manipulation within an emerging economy. Journal of Accounting in Emerging Economies, 11(2), 312-339. https://doi.org/10.1108/JAEE-02-2020-0041

Beneish, M. D. (1999). The detection of earnings manipulation. Financial Analysts Journal, 55(5), 24-36. https://doi.org/10.2469/faj.v55.n5.2296

Wiedman, C., & Zhu, C. (2023). The deterrent effect of the SEC Whistleblower Program on financial reporting securities violations. Contemporary Accounting Research, 40(4), 2711-2744. https://doi.org/10.1111/1911-3846.12884

Hoogs, B., Kiehl, T., Lacomb, C., & Senturk, D. (2007). A genetic algorithm approach to detecting temporal patterns indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 15(1-2), 41-56. https://doi.org/10.1002/isaf.284

Billett, M. T., Garfinkel, J. A., & Yu, M. (2017). The effect of asymmetric information on product market outcomes. Journal of Financial Economics, 123(2), 357-376. https://doi.org/10.1016/j.jfineco.2016.11.001

SABI. (2024). Análisis de Balances de Empresas. https://sabi.bvdinfo.com/version-2020226/List.FormatEdition.serv?_CID=110&BackServiceid=List&context=HM2OED7UO1AWU08

Ramírez-Orellana, A., Martínez-Romero, M. J., & Mariño-Garrido, T. (2017). Measuring fraud and earnings management by a case of study: Evidence from an international family business. European Journal of Family Business, 7(1), 41-53. https://doi.org/10.1016/j.ejfb.2017.10.001

Mohammed, N. F., Sutainim, N. A., Islam, M. S., & Mohamed, N. (2021). Integrated thinking, earnings manipulation and value creation: Malaysian empirical evidence. Business Process Management Journal, 27(4), 1179-1199. https://doi.org/10.1108/BPMJ-06-2020-0261

Published

2025-06-16

How to Cite

Fernández-González, R., Puime-Guillén, F., Coloret Portela, P., & Koltai, J. (2025). Economics of the Fish Processing Industry: Applying the Beneish M-Score Model. International Journal of Economic Sciences, 14(1), 147-161. https://doi.org/10.31181/ijes1412025183